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Brain–computer interfaces (BCIs) are recent developments in alternative 

technologies of human computer interaction. These interfaces aim to interpret the 

brain’s activity as user intentions in active BCI systems or cognitive/ emotional state 

in passive BCI systems. 

This dissertation focuses on implementation of BCIs in different aspects of 

Computer Aided Design system. Specifically, the dissertation explores the use of BCI 

in creating, selecting and modifying objects in CAD systems.  

Geometry creation is achieved through visual imagery by recording and 

analyzing EEG signals when subjects imagine distinct shapes. The algorithms 

developed in this research successfully classified the primitive shape that a subject 

imagined with an average accuracy of 44.6% (chance accuracy is 20%). The 

research further indicated that geometrical properties of objects such as roundness 

and parallel extrusion are also salient in classifying imagined objects.  



www.manaraa.com

vi 
 

 

Selection and modification of objects is obtained by developing algorithms based 

on the P300 characteristic of the EEG signal and motor imagery.  The classification 

result indicates the proposed method can select the target object/face with an 

average accuracy of 74%.  

Furthermore, the dissertation discusses a method to estimate user emotions of 

satisfaction and frustration that follow the successful or unsuccessful execution of a 

user command by the computer. This estimate is derived based on a combination of 

relative power spectral density and largest Lyapunov exponents. The results show 

that the algorithms can determine the user’s satisfaction level (negative, neutral and 

positive level) with an average accuracy of 79%. 
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Chapter 1 

Introduction 

This chapter presents the motivation and objective of this thesis. An outline of 

this dissertation is presented in the second section. 

1.1 Motivation and Objective 

The traditional mouse and keyboard dominate the interfaces for computer-aided 

design (CAD) systems. However, the emergence of technologies such as pen-based 

systems, haptic devices and speech recognition software has provided alternative 

means of interaction [1–3]. These alternatives seek to reduce the number of steps to 

activate commands for creating or editing CAD models and to obtain faster feedback 

from users [4].  

A more recent commercial technology in human computer interaction is the 

brain-computer interface. New developments in brain computer interfaces (BCI) 

have made it possible to use human thoughts in virtual environments [5–7]. BCIs 

create a novel communication channel from the brain to an output device bypassing 
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conventional motor output pathways of nerves and muscles. Currently, noninvasive 

BCIs are based on recording electroencephalography (EEG) signals by placing 

electrodes on the scalp. Several recent prototypes already enable users to navigate 

in virtual scenes, manipulate virtual objects or play games just by means of their 

cerebral activity [8], [9].  

 This dissertation investigates different applications of brain computer 

interfaces in CAD environments. The objective of such interfaces is to use the 

designer’s brain activity to create and edit CAD geometry. For a BCI system to 

succeed as a CAD interface, it must at least allow the basic interactions that a mouse-

and-keyboard system (the traditional CAD interface) does. A typical CAD system 

allows users 1) to create geometrical shapes, 2) to edit shapes by resizing or by 

operations such as Booleans, sweeps and extrusions and 3) to move shapes by 

rotations and translations. In addition, a CAD system provides extensive viewing 

capabilities such as zooms and rotations. In order to operate a CAD system with BCI, 

the following issues should be addressed: 

 Geometry representation: Before designing a 3D geometrical model of an 

object, a user has a mental representation of the shape.  The question is whether 

it is possible to retrieve information from this visual imagery construct a 3D CAD 

model. Can the BCI capture the shape and its attributes such as dimensions and 

proportions accurately enough to generate CAD shapes? 
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 Geometry editing: Can the BCI be used to edit the shapes that have been 

created? For example, can it be used to perform Boolean operations, sweeps, or 

lofts accurately? 

 Object manipulation: To edit a design, it is important to move, scale and 

rotate an object in a desired direction. Can BCIs be used to precisely locate and 

orient objects? 

 Error corrections: Can we get feedback from users’ thoughts to correct errors 

in the model generated by the BCI interface? For example, can we perform an 

“undo” command by getting emotional feedback or cognitive feedback? 

 Training period: How much training data is needed per subject to train 

different BCI command? Does the training have to start de novo for each subject 

or can we establish baseline classifiers for the various operations that can then 

be fine-tuned to each user by a customization procedure? 

Suppose that a designer wants to create the object shown in Figure ‎1-1. One 

scenario of user interaction is as follows: 1) The designer first imagines a cube 

corresponding to the main body of the object. When the cube appears on the screen, 

2) He/she can select one or multiple surfaces for further modification 3) Upon 

selection of the surface, he/she can edit the object by imagining the movement of 

selected surface or part in a desired direction (Motor Imagery) 4) Object 

modification will stop as soon as the user stops motor imagery 5-7) User select 

another face for modification and shape it to a desired form with motor imagery. 8) 

User then imagines a negative cylinder corresponding to the hole and imagines its 
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extent.  If the size of the hole is smaller than what he/she needs, he/she imagines 

increasing the size of the hole till it reaches the appropriate size. 

 

Figure ‎1-1 An alternative scenario for converting the user’s imagined shape into a 3D 
object via his brain signal 

The tasks for the BCI corresponding to the designer’s tasks above are: 

1) To determine the class of primitive object that the user was thinking about, 

its overall size and the relative dimensions of its features, 

2) To determine the locus of the user’s gaze for selecting the desired surface, 

3) To interpret user’s imagined motor actions and to move or modify the object 

accordingly,  

4) To receive feedback from motor imagery to stop object modification and/ or 

movement as the shape reaches its desired form, 
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5) To differentiate between imagery of positive and negative shapes, and 

6) To detect user dissatisfaction that result from the computer’s 

misinterpretation of the user’s command 

Some of these issues such as moving or rotating object via brain signals have 

been well studied by other research groups. Thus, motor imagery is not a primary 

subject of this thesis and the state of the art is used as an available tool (See Chapter 

6). Other issues such as object creation (visual imagery classification), surface 

selection and satisfaction are studies in next chapters. 

1.2 Outline of Dissertation 

This dissertation is organized as follows: Chapter 2 provides a brief background 

on the current status of brain computer interfaces in CAD. Chapter 3 presents the 

general structure of translating EEG signal to user’s command or feedback and 

discusses data recording, preprocessing, feature extraction/selection and 

classification. 

Each of chapters 4 through 6 focuses on the implementation of different types of 

BCI – active, reactive and passive, in CAD systems for geometry generation and 

selection as well as human’s satisfaction detection in interaction with machine.  

Chapter 4 investigates the possibility of using BCI for geometry specification. It 

describes a series of experiments with the following objectives: (i) to explore the 

feasibility of using BCI to distinguish between five primitive shapes (cubes, 

cylinders, spheres, cones and pyramids) imagined by the designer (ii) to check the 
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stability of the results over time (iii) to find characteristic features in EEG signals 

based on geometrical features of an imagined object. 

Chapter 5 explores the use of user’s satisfaction in human-computer interaction. 

The chapter describes an experiment where the user is asked to navigate a robot in 

a virtual maze.  Feature extraction and classification algorithms then estimate the 

user’s emotions of satisfaction and frustration that follow the successful or 

unsuccessful execution of a user command by the computer. 

Chapter 6 introduces a hybrid BCI for object modification in CAD. It describes a 

real time implementation of a BCI system based on P300 – feature of the EEG signal 

and on motor imagery. This system enables the user to select and move objects in 

virtual environments using their thoughts. This chapter discusses a method to select 

surfaces of an object using the P300 feature and a method to modify objects using 

motor imagery with SSVEP as internal feedback. 

Chapter 7 provides an overall evaluation of BCI as an alternative modality in 

CAD/E system and discusses the future direction in implementation of BCIs in such 

systems. It then provides the future prospects of this new modality in design 

environment. 
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Chapter 2 

Brain Computer Interfaces 

Brain-Computer Interface (BCI) technology is an alternative communication 

channel that enables users to send information via their thought to a computer 

application. BCI was primary designed for patients with severe neuromuscular 

disability [10]. However multidisciplinary research and progress in cognitive 

neuroscience, pattern recognition and signal processing have inspired the use of BCI 

as a new modality in human-computer interactions. BCIs use brain signals to collect 

information on user intentions and translates the brain activity as either a cognitive 

feedback or mental command [11]. For that purpose, two types of brain activities 

can be used: (i) electrophysiological and (ii) hemodynamic. 

Electrophysiological activity is the summation of the electrical potentials of 

many neurons. When neurotransmitters are released at a synapse, they cause an 

influx of positive ions that depolarize the neurons which is known as post-synaptic 

potential (PSP).  Each neuron that receives the synaptic input forms a dipole 

between the soma (cell body) and apical dendrites. The human brain consists of 
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approximately 100-billion neurons. When thousands of spatially aligned neurons 

receive similar synaptic input, the summation of their dipoles yields a voltage which 

can be detected on the scalp [12]. Furthermore, since fluctuating electrical dipoles 

are associated with magnetic fields, these individual magnetic fields can be added to 

form magnetic fields which can be detected on the scalp.  

Electrophysiological activity in the brain can be measured both invasively and 

noninvasively. Non-invasive recording includes magnetoencephalography (MEG) 

where the magnetic field is recorded and electroencephalography (EEG) which 

records the voltage [13]. EEG uses electrodes placed directly on the scalp to measure 

the weak (5-100‎μV)‎electrical‎potentials. The main drawback of this method is a poor 

signal-to-noise ratio.  In order to increase the quality of signal, the recording site 

should be placed closer to the EEG source. Invasive methods are used for this 

purpose. 

Two invasive techniques for recording electrophysiological signals are the 

electrocorticogram (ECoG) [14], [15] and intra-cortical neuron recording (INR)[16].  

ECoG places a mesh of electrodes on the surface of the cortex, while INR implants 

micro-electrodes inside the cortex.  Both of these techniques provide a very good 

signal-to-noise ratio. However they have two main draw-backs, 1- they are invasive 

2- They cannot cover the whole cortex and therefore they are limited to certain 

applications [17].  

Figure ‎2-1 compares the invasive and non-invasive BCI for recording 

electrophysiological activity within brain. Figure ‎2-1(a) illustrates the voltage based 
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recording of electrophysiological activity. The recording site are invasive methods 

(ECoG and INR) are under the skull while EEG electrodes pick up the signal on the 

scalp. Figure ‎2-1(b) shows MEG, a non-invasive method that records the magnetic 

field producing by the dipoles. 

 

Figure ‎2-1 The Comparison of different BCI recording 

Hemodynamic activity is a process in which a higher rate of blood glucose and 

oxygen are released to active neurons than inactive neurons. These changes in 

oxygen blood content can be quantified by neuroimaging methods such as 

functional magnetic resonance (fMRI) [18–20], Positron emission tomography 

(PET) [21] and functional near-infrared spectrography (fNIRS) [22]. These methods 

rely on the blood-oxygen levels at various locations of the brain.  

fNIRS technology works by projecting near infrared light into the brain from the 

surface of the scalp and measuring optical scattering at various wavelengths, which 

represents localized blood volume and oxygenation changes [23].  This information 

changes can be used to generate detailed functional maps of brain activity based on 

the rate of oxygen consumption [22]. The mechanism underlying fINRS is shown, in 

Figure ‎2-1(c). 
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Similarly fMRI and PET use blood-oxygen levels contrast. In fMRI, the difference 

in magnetization of oxygen-rich and oxygen-poor blood is measured [18]. PET is a 

radioactive agent-based technique in which fludeoxyglucose (FDG) is used to map 

neural metabolic activity in terms of regional glucose uptake [17].  

fNIRS, fMRI and PET can provide information about phenomena that occur not 

just close to the scalp but also in deeper structures.  These methods also provide 

better spatial resolution than the EEG as they directly measure activity in different 

regions. EEG, on the other hand, measures the scalp voltage that could be the result 

of the addition of voltages from various parts of the cortex. However, fNIRS, fMRI 

and PET share the drawback of having a low temporal resolution, since it takes 2-5 

seconds to detect the change of local blood flow in response to neural activity. The 

spatial resolution of fNIRS is also low; its greatest potential therefore lies in being a 

secondary measure to provide additional information on brain activity through the 

BOLD component. Figure ‎2-2 compares the spatial and temporal resolution of 

discussed methods. 

 

Figure ‎2-2 Comparison of spatial and temporal resolution of different brain imaging 
techniques 
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Among the current monitoring methods, EEG constitutes an attractive choice for 

BCI systems because it is non-invasive and relatively simple to implement. 

Furthermore, recent advances in wireless systems and electronics have made the 

EEG relatively inexpensive as well. Therefore, most BCI researchers focus on EEG-

based systems. Thus, throughout this dissertation, BCI will stand for EEG-based BCI.  

Based on the type of information and technology that is used to extract them, BCI 

systems can be categorized as active, reactive and passive systems [24]. 

 Active BCI: In an active BCIs, the user, voluntarily and independent of 

external events, starts a mental task to generate commands to external 

applications. Motor imagery is the best example of active BCI. 

 Reactive BCI. In reactive BCIs, the brain’s reaction to an external stimulus 

generates the output command or feedback. Reactive BCIs are indirectly 

modulated by the user for controlling an application. Applications based on 

visual evoked potentials and P300 are the best examples of reactive BCI (See 

Section 2.2.1 and 2.2.2). 

 Passive BCI.  A passive BCI outputs a cognitive feedback from user’s mental 

state from his/her arbitrary brain activity without any voluntary control. Level 

of engagement, excitement, and workload are some of the examples of cognitive 

feedbacks in passive BCI. 
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2.1 Active BCI 

In active BCIs, the user voluntarily generates specific patterns of brain activity 

which can be detected by a machine learning algorithm, so that the resulting 

information can be used as a real-time input modality for controlling a device by 

thought. Some examples of active BCI systems are motor imagery [13], [25–27], 

visual imagery [28], [29] and other mental task such as auditory imagery of music 

and spatial imagery involving navigation in familiar surroundings [30]. Among the 

various mental tasks that have been studied, motor imagery has been the subject of 

most BCI because motor imagery has the potential to open a new communication 

channel for disabled individuals. Visual imagery also plays an important role in 

human computer interactions. The next sections provide more information on these 

tasks.   

2.1.1 Motor Imagery 

Functional brain imaging studies have shown similar patterns of activity during 

motor imagery and actual movement performance [31]. This similarity makes motor 

imagery a good mental task for BCIs [32].  

Motor activities such as movements of hands and fingers are associated with the 

mu-rhythms of the EEG that can be recorded at sensorimotor cortex [25], [31]. The 

mu-rhythms have three primary frequency components: a component between 9-11 

Hz, a component near 20 Hz and one near 40 Hz.  
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Sensorimotor stimulation, motor behavior, and mental imagery can change the 

functional connectivity within the cortex and result in amplitude suppression  

known as event-related desynchronization (ERD) or in amplitude enhancements  

refereed to event-related synchronization (ERS) in certain frequency components 

(alpha and central beta) [31].  Preparation and planning of self-paced hand 

movement results in a short-lasting ERD of the alpha and central beta rhythms [31], 

[33]. This is followed by ERS upon completing actual/imagery movement and with 

relaxation. 

BCI research groups have used motor imagery tasks such as left-right hand 

movement [34], [35] and foot movement [36] and have implemented them for 

navigation in virtual systems [37] or cursor movements [38]. 

2.1.2 Visual Imagery 

 Visual imagery is the set of processes associated with “seeing” with the mind. 

The goal in using visual imagery in BCI is to explore whether the entire object or 

certain characteristics of the object can be detected from the user’s EEG signal when 

he/she imagines the object.  The following two different models are often tested in 

this regard: 

 Property based models: These models seek to find specific attributes of the 

object that define the object. For example, sensory features such as the form and 

color of the object or the typical motion of the object may be used as attributes. 

Other attributes may be functional/verbally mediated properties such as where 

an object is typically found, its social significance, etc. [39]. 
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 Domain specific models: These models classify objects based on their 

domains. For example, human faces, buildings, animals, and man-made objects 

are assumed to belong to different domains.  

Domain specific model has been widely investigated in the classification of visual 

imagery. Reddy et al. [40], using fMRI, were able to classify different categories of 

imagined objects when they presented participants with auditory prompts of four 

categories of objects –food, tools, familiar faces and buildings and asked them to 

mentally construct visual images of these objects.  A similar study has been 

conducted with EEG analysis in the form of event related potentials (ERP) by 

Simanova et al. [41]. They used multivariate pattern analysis to classify EEG data 

recorded during visual imagery of faces, plants and tools and could achieve 

accuracies of 89% with object drawings as visual cue. They also used auditory and 

orthographical cue which results in a lower, though significant, classification 

accuracy. 

Furthermore, Bobrov et al. applied categorical object-based classification of 

single trial EEG to distinguish between face, buildings and animals during visual 

imagery [28]. They used common spatial pattern to extract features from PSD of 

different frequency bands. Using a Bayesian classifier, they achieved an average 

classification rate of 58% over seven subjects. The information transfer rate of their 

system was in average 29 bit/min with a maximum of 35 bit/min.  
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2.2 Reactive BCI 

In reactive BCI, the signal of interest is the brain response to an external 

stimulus. External visual or auditory stimuli elicit EEG signals. These signals have 

specific characteristics in time and frequency domain which depend on the task and 

the way the stimulus is presented. The most prominent example of a reactive BCI is 

the P300 speller [42], [43]. Other examples include also BCIs based on steady state 

visual [44–46], somatosensory [47], [48] or auditory potentials [49]. 

2.2.1 P300 

P300 is a positive EEG peak that occurs during 200–700ms (typically 300 ms) 

after stimulus onset, and is typically recorded over the central-parietal scalp [50]. 

The response is evoked by attention to rare stimuli in a random series of stimulus 

events (i.e., the oddball paradigm).  

In P300-based BCIs, the subject is presented with a sequence of events that can 

be classified into two categories: target and non-target. The task of the subject is to 

focus on target events that occur less frequently. As a result, a prominent P300 

component will be appear in ERP signal which can determine the subject’s intent. 

The first P300 based BCI was P300 speller designed for locked-in patients [51]. 

All alphabets were placed in a 6x6 matrix after which its rows and columns were 

randomly flashed. P300 component would be detected after the flash of the row or 

the column on which the target letter was. 
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2.2.2 Steady State Visually Evoked Response 

A steady-state visual evoked potential (SSVEP) is a resonance phenomenon 

arising mainly in the visual cortex when a person is focusing his/her visual attention 

on a light source flickering with a frequency above 6 Hz [52]. An SSVEP can be 

detected by examining the spectral content of the signals in the visual cortex. When 

actions are associated with target flickers of different frequencies, the subject can 

control a BCI by gazing at the target corresponding to the desired action.  

Different versions of cursor movement have been implemented by using SSVEP 

[44], [53–55]. Usually multiple directions are marked by small flickering squares on 

the display, each one flickering at a slightly different frequency. When the user gazes 

at the desired flickering bar, the frequency component of the flashing object can be 

detected in the frequency spectrum. SSVEP applications do not need training period 

and are often detectable by using a threshold in frequency domain. 

2.3 Passive BCI 

The main purpose of passive BCI is to gain information about the ongoing user 

state, including involvement, work load and emotions. As emotion and satisfaction 

are encoded in human cognition, passive BCI may also be referred to as cognitive 

monitoring [56]. The outcome of this type of BCI can be used to give a situational 

evaluation of a human interaction, which can be utilized for neuro-ergonomics, 

usability tests or a user state detection related to experimental conditions [57], [58]. 
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Novel systems based on passive BCIs can detect or even predict error potentials 

[59–61]. 
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Chapter 3 

Experimental methodology 

EEG-based systems share the same fundamental steps in EEG signal processing 

and classification which are shown in Figure ‎3-1.  

EEG 
Acquisition

Preprocessing
(Artifact Removal)

Feature 
Generation

Feature 
Selection

Mental Task

Classification

 

Figure ‎3-1 Process of developing BCI for translating EEG signals 

The recorded brain signals include artifacts such as muscle movement, eye 

movement, etc. The goal of the preprocessing step is to remove the artifacts from 

the EEG signals. The feature generation and selection blocks in Figure ‎3-1 transform 

the preprocessed signals into a feature vector. The generated feature vector should 

have statistically significant differences for different classes of imagined objects.  

The classification block uses the feature vector to classify an unknown event based 
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on a set of observed events (training data). The details of each of these blocks are 

explained in next subsections. 

Feature extraction depends on the BCI category (active, reactive or passive) and 

on the mental task required in the experiment. The following sections introduce the 

data acquisition, preprocessing methods and classification that are common in all 

the EEG experiments performed in this study. Feature extraction/selection specific 

to each experiment will be described in its related chapter.    

3.1 Data Acquisition 

EEG signals are recorded using the Emotiv neuroheadset [8] at 14 channels (plus 

CMS/DRL references, P3/P4 locations). The channel names based on the 

international 10-20 locations are: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, 

F8, AF4, which are indicated in Figure ‎3-2.  

AF3

Reference 

Electrodes

AF4

F7 F8F3 F4

T8T7

P8

O2O1

P7

FC5 FC6

 

Figure ‎3-2 EEG Recording location 
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3.2 Signal Conditioning and Artifact Removal 

The main artifacts in EEG signals are muscle movements –Electromyography 

(EMG)- eye blinks and eye movements –Electrooculography (EOG).  

Figure ‎3-3 shows the domain of each signal in amplitude and frequency. It can be 

seen from Figure ‎3-3 that a simple low pass filter around 30 Hz can remove most of 

EMG artifacts. Therefore the main concern in artifact removal is EOG and eye blinks.   

 

Figure ‎3-3 EEG and its artifact 

The recorded EEG data at each channel is the difference between the potential 

from a source to the channel location and the reference electrodes. The recorded 

EEG signals  can be assumed to be a linear combination of 

‘n’ unknown and statistically independent sources (Figure 

‎3-4). In other words, X=WS where ‘W’ is a weighting matrix. Since we record the 

signals at 14 channels, we assume that there are 14 independent sources too 

(n=14). 

)}(),...(),({ 1421 txtxtxX 

)}(),...(),({ 21 tststsS n
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X1(t)

X2(t) X3(t)

X4(t)

(b)(a)  

Figure ‎3-4 A) Blind source separation of EEG signals through ICA B) Brain map and of 
an IC associated with blink artifact used as a template 

In the preprocessing step, a combination of independent component analysis 

(ICA) and empirical mode decomposition (EMD) is used to detect and remove 

artifacts. It has been shown by Onton and Makeig [62] that independent 

components of EEG signal represent synchronous activity in underlying cerebral 

and non-cerebral sources (e.g., potentials induced by eye or muscle movement) and 

therefore can be used to separate the artifact signal from the cerebral activity. 

The main aim of ICA step is to find the independent components of the recorded 

data in each trial, such that they have the minimum mutual information [62]. In 

other words: 

XWS X

1    where   )](),...(),([ 21 tststsS nX    (‎3-1) 

The weighting matrix ‘W’ can be found by minimizing the mutual information

)( XSI  between the sources, XS , given in Equation (3.2) 


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      (‎3-2) 

Where (.)p denotes the probability density of the argument. To implement ICA 

decomposition, we use the logistic infomax ICA algorithm [63], [64] with natural 
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gradient and extended ICA extensions implemented in EEGLAB by Delorme and 

Makeig [64]. After performing ICA decomposition, independent components ‘ )(tsi ’ 

associated with artifacts like eye blink or muscle movement are detected based on 

their signature on brain maps and power spectral density method [62], [66]. Figure 

‎3-4b compares the brain map of a blink–related component to a normal one. It can 

be seen that, in blink-related component, there is a strong far-frontal projection 

typical of eye artifacts.  

EEG signal is usually corrected by removing the artifact related IC. However, one 

of the limitations of ICA is that the ICs selected for removal contain not only ocular 

activity but also some EEG activity, especially when the number of recording 

electrodes is relatively small (14 electrodes in our case). Therefore, straightforward 

removal of these ICs might lead to a loss of EEG data. Thus, after detection of artifact 

related IC, we use empirical mode decomposition (EMD) to clean it as proposed by 

Lindsen and Bhattacharya [67]. This process is shown in Figure ‎3-5. 

 

ICA
X14xN

Raw EEG

S14xN

Independent 
Sources Find the artifact 

source

S=W-1X

Raw EEG: X14xN = [x1(t) x2(t) … x14(t)]

EMD

Template

sk(t)

sk(t) = Sui(t) + r(t) 

Find the artifact 
related IMF of source

Raw Sources: S14xN = [s1(t) s2(t) … sk(t), … s14(t)]

Artifact-free Sources: S14xN = [s1(t) s2(t) … sk(t), … s14(t)]^ ^

uj(t), uj+1(t), …, um(t)

i=1

m

Combine the 
non-artifact IMF

sk(t) = Sui(t) + r(t) 
i=1

j-1

^

Recombine 
artifact freeICs

X=WS
^^

Clean EEG

X14xN
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Figure ‎3-5 ICA-EMD Combination for artifact removal 
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EMD decomposes the artifact-contaminated IC signal into a finite set of intrinsic 

mode functions (IMFs), and then uses a threshold to detect and remove the artifact 

related component in the contaminated IC. Therefore, by summing up the non-

artifact components in the artifact related IC, that independent component can be 

cleaned.  Finally, the artifact free EEG can be obtained by using the artifact free 

sources in Equation 3.1. 

Intrinsic Mode Functions (IMFs) are defined as a class of functions that satisfy 

two conditions: 

1- In the whole data set, the number of extrema and the number of zero 

crossings must be either equal or differ at most by one. (In other words, 

every adjacent local maxima and minima must across the zero line.) 

2- At any point, the mean value of the envelope defined by the local maxima and 

the envelope defined by the local minima is zero. (In other words, the upper 

envelope and the lower envelope estimated from the local maxima and local 

minima are approximately symmetric with regard to the zero line.) 

To extract IMFs from the artifact contaminated source signal S(t), empirical 

mode decomposition uses a sifting process which is demonstrated in Figure ‎3-6A.  

As each IMF is extracted, it is subtracted from the original signal to define 

the residue . Since the residue still contains information related to longer 

period components, sifting process will be applied to it again to extract a new IMF. 

This process is shown in Figure ‎3-6B. It will be stopped when either the residue 

)(tui

)(tri
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becomes a monotonic function or its amplitude gets too small that can be 

considered inconsequential. 

Artifact Source S(t)

Identify all extrema

Interpolate local 
maxima U(t)

Interpolate local 
minima L(t)

M(t)=[U(t)+L(t)]/2

IMF? S(t)=h(t)STOP
Y N

S

r1u1

r2u2

r3u3

h(t)=S(t)-M(t)

rmum

a) b)

 

Figure ‎3-6 A) Siftting method for finding each IMF. B) Empirical Mode Decomposition 
of the signal to m IMF 

Using the EMD method, the artifact related source S(t) is represented as a sum of 

n IMFs and a residue r as shown in Equation 3.3. 

 


m

i i rtutS
1

)()(         (‎3-3) 

The next step in artifact removal process is to determine which IMFs of artifact 

related component are related to eye movement. 

As shown in Figure ‎3-3, EOG components have low frequencies and large 

amplitudes. Therefore, IMFs with EOG components will have a larger standard 

deviation (SD) than EEG related IMFs. The IMFs are sorted in descending order of 

frequency -  associated with the locally highest frequency and  with the 

lowest frequency. Based on this property, it is suggested by Lindsen and 

)(tui

)(1 tu )(tun
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Bhattacharya [67] that if the SD of an IMF is larger than 1.5-2 times the SD of the 

first IMF, then that IMF is a blink-related component. By removing the artifact-

related components, the related IC can be cleaned and ultimately the eye 

movement/blink artifact can be removed from the EEG signal. This procedure is 

shown in Figure ‎3-7, where IMF of an independent component associated with 

artifact are detected and removed to clean the raw EEG signal. 

 

Figure ‎3-7 Contaminated EEG and its artifact component in its intrinsic mode 
functions, Artifact related components are highlighted 

3.3 EEG Components for Feature Extraction 

The selection of feature extraction methods depends on the BCI category (active, 

reactive or passive) and on the mental task required in the experiment. The features 

of interest are usually derived with time series analysis methods such as 

autoregressive or with frequency analysis of EEG components. In this section, we 
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give an overview the characteristics of different frequency component of EEG signal 

which will be later used in Chapter 4 and 5. 

The usual classification of EEG rhythms based on their frequency ranges is as 

follows: delta (1 to 4 Hz), theta (4 to 8 Hz), alpha (8 to 13 Hz), beta (13 to 30 Hz), 

and gamma (higher than 30 Hz). The alpha rhythm, discovered by Hans Berger in 

1929, is typical of a resting condition and disappears when the subject receive a 

sensory signal or when he/she makes mental efforts [68].The theta rhythm usually 

appears in periods of emotional stress and during rapid-eye movement sleep [68]. 

The delta is the dominant frequency band during deep sleep and anesthesia, and is 

also present during various meditative states involving willful and conscious focus 

of attention in the absence of other sensory stimuli [68]. The beta rhythm is typical 

of periods of intense activity of the nervous system and occurs principally in the 

parietal and frontal regions [68]. Finally gamma band is thought to be associated 

with attention, perception, and cognition [68]. 

3.4 Classification 

There are different linear and nonlinear machine learning methods such as LDA, 

SVM, and Neural-Network which can be implemented for classification of EEG 

signals. Lotte et al. have reviewed a complete list of classification method used in 

BCI [69].  

Among the various classifiers, in this dissertation, we use linear discriminator 

analysis (LDA) to classify the EEG data into the different categories. LDA has a very 
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low computational requirement which makes it preferable in this study. The aim of 

this technique is to find a hyperplane to separate the data from different classes. In a 

binary classification case, the side of the hyperplane that the feature vector is placed 

determines the classification result. We have used a multi-class LDA for 

classification purposes according to the following procedure:  

Suppose that the number of classes is C and that for each class, the number of 

training samples is E. For each of these training samples, we extract F features. Let 

 be the  feature of the  example in the training set of class c. The sample 

estimate of the mean feature vector per class is given by: 

         (3-4) 

The sample estimate of the covariance matrix of class ‘c’ is . 

Then the covariance of all classes are averaged to calculate an estimate of the 

common covariance matrix ‘ ’. Finally the weight associated to each of the features 

is calculated as: 

     (3-5) 

For each testing data, a score of classifying as class ‘c’ is calculated by using 

Equation 2-5.  

      (3-6) 
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The output of the classification stage for each data set is the class with the 

highest corresponding score calculated through Equation (3-6). 
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Chapter 4 

Visual Imagery 

Mental imagery is defined as “an experience that resembles perceptual 

experience, but which occurs in the absence of the appropriate stimuli for the 

relevant perception” [70]. Mental imagery arises when perceptual information is 

recalled from memory or from previous perceptual input [71]. For every type of 

perception, there is a corresponding type of imagery. Visual mental imagery (‘seeing 

with the mind’s eye’), auditory imagery and kinesthetic imagery - commonly called 

‘motor imagery’- are the main categories of mental imagery that are be considered 

in brain-computer interfaces [72]. 

Motor imagery has been the primary focus of most BCIs [73–78]. Here, signals 

are obtained during imagined motor responses. For example, Brunner et al. [73] 

classifies imagined movements of the right and left limbs.  Kubler et al. [74] use BCI 

to capture desired motor movements for patients that suffer from paralysis. Lemm 

[75] describe a system to classify imaginary hand movements using the -rhythm 

(8-13 Hz) EEG signals. It has been shown that using EEG based BCI, it is possible to 

* The material presented in this chapter is based on our previous work [29] copyright @2012 by Elsevier with permission. 
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control the 2D motion of a cursor [76–78] and to rotate an imaginary object along 

various axes [79], [80].  

Visual imagery can be classified into two subcategories: object-based imagery 

(e.g. imagery of shapes and colors) and spatial imagery (such as location and spatial 

relations) [81]. During visual mental imagery, neural representations of a visual 

entity are re-activated endogenously from long-term memory and maintained in 

visuo-spatial working memory to be inspected and transformed [81], [82]. 

Visual mental imagery consists of two main stages: 1) image generation 2) image 

maintenance [71].  It has been estimated that the average duration of generated 

image is about 250 ms [83]. Thereafter, another mental mechanism (image 

maintenance) is involved in keeping the internal representation of generated image. 

The neural processes underlying each stage are still unclear. However, fMRI studies 

have shown that the middle-inferior temporal region of the brain, especially that of 

the left hemisphere, is involved in image generation [84]. Another study by Mellet et 

al. [85] reported activity in right occipital cortex during generation-maintenance of 

the mental image. Cornoldi et al. [86] identified six fundamental characteristics 

which affect the vividness of mental image or, in other words, the maintenance of 

mental images. These characteristics are: specificity, richness of detail, color, 

saliency, shape and contour and context. Although the individual contributions of 

each characteristic vary, shape and contours are shown to be the best predictors of 

vividness [87]. 
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Visual imagery has been mostly studied with PET or fMRI rather with than EEG 

analysis, because EEG signals have a poor spatial resolution that makes it difficult to 

detect detailed visual imagery. However, even though exact geometry may be 

difficult to detect, it may be possible to determine the features of the geometry such 

as roundness, sharpness, symmetry and curvature from the EEG signals [88]. Since 

the selected objects in this study - cubes, cylinders and spheres, differ in these and 

other features, the hypothesis of this research is that these primitive geometries can 

be distinguished from each other using EEG signals when the user imagines these 

geometries  

4.1 Classification of Primitive Shapes 

The experiments were conducted as a series of trials. Each trial had two parts. In 

the first part, the stimulus was presented to the participant; in the second part, 

participants imagined the object (Details of the experiments are presented in the 

next section). Figure ‎4-1 shows the signal recorded in two trials at channel O2. 

The first 10% of the signals recorded during the mental task was removed and 

the rest was used for processing. The EEG signals recorded between the trials were 

used as baseline. Let ,  and be the truncated data, baseline and the 

combination of two during the ith trail (Figure ‎4-1). For preprocessing, we used the 

combined signal  whereas for feature extraction, we analyzed  and  

separately. 

iE iB iX
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Figure ‎4-1 EEG signals recorded at channel O2 and time course for two trials 

4.2 Feature Extraction 

After removing the artifacts from the EEG signals, we perform another ICA on 

the artifact free signal   . This procedure results in 14 independent components {

}. The new components represent non-artifact 

sources with minimal mutual information. Then, we divide each component into two 

segments: the EPOCH component and the base line component . We use 

these components to extract the features.  

Several features have been used in the literature for classifying EEG data in BCI 

for different mental tasks. Some of these features are: band powers [89], power 

spectral density values [6], [73], autoregressive and adaptive autoregressive 

parameters [90], time frequency features [91] and inverse model-based features 

[69]. EEG signals are nonlinear and non-stationary i.e. they may rapidly vary over 

time and especially over sessions. To deal with this characteristic of EEG signals, we 

have selected the Hilbert-Huang transform (HHT) over classical time–frequency 

analysis methods [92].  
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HHT adaptively tracks the evolution of the time–frequency in the original signal 

and provides detailed information at arbitrary time–frequency scales. HHT is 

computed in two steps: 

1) Empirical mode decomposition (EMD) 

2) Hilbert spectral analysis.  

HHT uses the EMD to decompose a signal into a finite set of intrinsic mode 

functions (IMFs), and then uses the Hilbert transform of the IMFs to obtain 

instantaneous frequency and amplitude data. Using the EMD method (described in 

section 3.2), a time series signal  is represented as a sum of n IMFs and a 

residue r. Having obtained the IMFs using EMD method, we apply the Hilbert 

transform to each IMF component. Instantaneous amplitude , phase  and 

frequency  can be expressed as Equation 4-1 to 4-3. 

       (4-1) 

       (4-2) 

         (4-3) 

where is the Hilbert transform of the IMF. The frequency-time 

distribution of the amplitude over different IMFs is designated as the Hilbert 

spectrum . Finally, the marginal spectrum is computed as Equation 4.4:  

        (4-4) 
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Using the Hilbert marginal spectrum, we calculate the power of five 

frequency bands (Delta1-4 Hz, Theta 4-8 Hz, Alpha 8-12 Hz, Beta 12-30 Hz, Gamma 

30-64 Hz) for each independent component of the EEG signals. This results in 70 

features per trial (5 power bands for each of the 14 independent components).  

Finally, since the total energy of the recorded data can change in time, we 

normalize the features of each trial with respect to the features of baseline of the 

same trial. Figure ‎4-2 shows the steps involved in preprocessing and feature 

generation. 

 

Figure ‎4-2 Block diagram for Feature generation 

4.3 Experimental Study 1: Classifiability 

The first experimental study consisted of 10 subjects (7 male and 3 female) 

between the ages of 18 and 36. All the subjects had a background in engineering but 
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no experience with brain computer interfaces. The experiment was run in three 

sessions. Each session lasted 15-20 minutes. There was a break of 5 minutes 

between sessions 1 and 2, and a break of 15-25 minutes between sessions 2 and 3. 

Subjects were instructed to notify the experimenter if they experienced fatigue or 

needed a break at any time during the experiment. The experimental studies were 

approved by the institutional review board (IRB) of the University of California, 

Riverside.  

In the first session, an image of one of the primitive objects (cube, cylinder, 

sphere, cone and pyramid) was displayed in a random sequence on the screen for 2 

seconds. The images were presented in isometric view at the same location on the 

screen. They also had the same overall size and color. After this period, the screen 

went blank and the participant was instructed to imagine the same object on the 

blank screen at the same location and orientation. The subject was given 5 seconds 

for the imagery during which EEG data was recorded.  At the end of each trial, a 

message appeared on the screen asking the subject to get ready for the next trial. 

The interval between each trial randomly varied between 2 and 5 seconds. Each 

session consisted of 10 trials per object.  

In the second session, instead of using the image of an object, a word (e.g. 

“cube”) appeared as a verbal cue. The reason for this change of type of cue is as 

follows: Using only visual image cues followed by visual imagery, it would be 

difficult to tell if the EEG signals are a result of the imagery or just a remnant of 

visual perception. However, using a different type of cue such as the name of the 
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object instead of its image can help gain more confidence in the algorithms. If the 

classifier trained on imagery prompted by visual image cues can perform well on 

the imagery prompted by verbal cues, then we can be more confident that the 

classifier is indeed capturing visual imagery.  The cues in the third session were the 

same as first one. However, in this session, each subject performed object imagery of 

ten simple and ten complex objects shown in Figure ‎4-3. 

 

Figure ‎4-3 Simple and complex objects used in the third session as visual cue 

Simple objects are categorized into two sets: 1) five primitive shapes which were 

used in the first two sessions and we will refer to them as S1-set, 2) five new shapes 

which were only presented in session 3 (S2-set). The second sets of simple objects 

were either incomplete versions of the first set (e.g. truncated cone instead of a 

standard cone) or the same objects with more edges (e.g. hexagonal pyramid 

instead of a triangular pyramid). The last set of recorded data was complex objects, 

which were considered as a combination of two or more primitives (Figure ‎4-3). 
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4.4 Classification of Primitive Shapes 

To classify the primitive shapes, we use a subject-based classifier. Prior to 

classification, it is important to determine which of the extracted features provides 

the most useful information about the mental task for each subject. To do so, we 

used a series of binary feature ranking using the Mann-Whitney-Wilcoxon (MWW) 

test. 50% of the recorded data for the S1-set of shapes are randomly selected as a 

training set in feature selection. We rank the features of the training data by MWW 

test in five binary evaluations (each imagined geometry vs. the other classes). Thus, 

five rankings for features are obtained, each of which represents the most important 

features of its corresponding class. The top 3 features of each class are selected as 

the feature set. Moreover, if any other features appear frequently (in 3 out of 5 

ranking) as next top 5 features, it is also included in the feature set.  

The MWW test ranked beta and gamma activity at channel location AF4, FC6, P8 

and O2 (see Figure ‎3-2) and theta band at channels O1 and O2 to be among the top 

features. 

Figure ‎4-4 shows the mean activity of the brain in five frequency bands over 30 

trials for subject 5 for each of the five classes. In accordance with the results of the 

MWW test, Figure ‎4-4 shows that the right hemisphere is more active during mental 

imagery-maintenance. These results are also consistent with the findings of Mellet 

et al. [85]. 
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Figure ‎4-4 Band based map of brain activity for subject 1 during visual imagery of 
different objects 

We perform a subject-based classification within and between different sessions 

of the same stimulus (image) or different stimuli (text vs. image). In all evaluations, 

we use a LDA multi-class classifier. The performance of each classifier is evaluated 

through a 10 fold validation. The average of the classification results for each 

subject along with information of training and testing sets are given in Table ‎4-1. 

Table ‎4-1 shows that if 80% of the recorded data is used for training, the average 

accuracy among the entire subject is about 44.6% (chance accuracy is 20%) which is 

more than double the expected accuracy of a naïve classifier. 
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The third row of Table ‎4-1 shows the robustness of the feature extraction and 

classification where training and testing data are recorded in two different sessions 

with a 30~50 min time gap between them. Note that the accuracy of the classifier 

does not decrease significantly from the first evaluation where the same amount of 

training data was used. 

Table ‎4-1 Subject based Classification rate for three different conditions 

Data set information S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

Training:50% of sess.1&3-50 image 

Test:50% of sess. 1&3-50 image 
38.6 40.9 38 34.8 34 44.9 27.9 38.5 29.4 34 

Training:80% of sess. 1&3-80 image 

Test:20% of sess. 1&3-20 image 
50.5 43.1 51.6 48 37.1 54.1 35.8 45.8 36 44 

Training:sess.1-50 image 

Test: sess. 3-50 image 
34.5 40 34 32.5 30 42.5 27.5 36 29.5 31 

Training:50% of all sess.-75 image& txt 

Test:50% of all sess-75 image &txt 
34.9 38.7 36.5 34.7 32 38 26 34 29.3 30 

Training: All sess.1&3-100 image 

Test: All sess. 2-50text 
38.7 40 41.2 44 33.4 56.7 26.5 44 32 42.5 

To test the robustness of the classification to the stimulus type, both image and 

text cues are used. The last row in Table ‎4-1 shows that the classifier trained on the 

image stimulus data performs just as well on the text stimulus. The average 

accuracy of the classifier in this case is about 40% (ranging from 26.5 to 56.7%) 

which is slightly lower than previous conditions.  

The confusion matrix for 60% data training and 40% testing is shown in Table 

‎4-2. The presented data in this table is averaged over all 10 subjects. Therefore, it 

shows the overall confusion between classes. The bold numbers in the main 
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diagonal show the rate that the true class is correctly predicted by the classifier 

which is between 30.6 to 37.1%.  

Table ‎4-2 Object imagery classification rate averaged over all subjects 

 Classification Result % 

T
ru

e
 C

la
ss

 

 Cube Pyramid Cylinder Sphere Cone 

Cube 36.7 16.2 15 18.3 13.7 

Pyramid 16.6 33.6 20.4 13.5 15.9 

Cylinder 16.2 11.5 37.6 15 19.6 

Sphere 16.4 14.6 23.2 30.6 15.3 

Cone 24.1 12.1 8.8 17.9 37.1 

Table ‎4-2 also shows the misclassification rate between any two classes. For 

example, cube is often misclassified as sphere (18.3%) and pyramid is mostly 

misclassified as cylinder (20.4%).The misclassification could result from insufficient 

or inappropriate information in the features. It could also arise from the similarity 

between certain objects causing the features of different objects to be very close to 

each other. To test for the latter reason, we determine the number of times a 

misclassified object occurs as the second choice in a classifier’s output. 

Table ‎4-3 shows this result. To read this table, assume that the true class of the 

object is a “cube”. The first row of Table ‎4-3 shows the number of times the classifier 

misclassifies the cube as some other object but the true class, viz. cube, is ranked as 

the second choice. For example, when the classifier for the cube incorrectly classifies 

the cube as a sphere, 8.3% of the time the cube occurs as the second choice for this 

classifier. Since the cube classifier classifies a cube as a sphere 18.3% of the time 

(see the first row of Table ‎4-2), the proportion of times that the cube occurs as a 
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second choice when the cube classifier outputs a sphere is 8.3/18.3 = 45.4%. It 

should be noted that this result is more or less symmetric. In other words, the 

classifier for the sphere also often confuses the cube with the sphere (see the first 

column of the fourth row of Table ‎4-3). A similar confusion can be seen between the 

cone and the pyramid.  

Table ‎4-3 Classification results of visual object imagery (Top 2 classes) averaged over 
all subjects in percentage 

 Classification Result % 

T
ru

e
 C

la
ss

 

 Cube Pyramid Cylinder Sphere Cone 
Classification rate 

(Top 2 classes) 

Cube - 0.8 (4.9) 0.8(5.3) 8.3(45.4) 0.4(2.9) 46.7 

Pyramid 3.3(19.9) - 4(19.6) 5.9(43.7) 5.4(34) 52.3 

Cylinder 1.1 (6.8) 1.9(16.5) - 2.5(16.7) 7.1(36.2) 50.3 

Sphere 6.5(39.6) 5.4(37) 7.1(30.6) - 3.8 (24.8) 53.3 

Cone 3.8(15.8) 5.4(44.6) 1.1(12.5) 3.6 (20.1) - 51 

One possible explanation is that both the cone and pyramid have angled 

segments making them different from the other objects. The cube and sphere also 

have the highest ambiguity possibly because of multiple axes of symmetry. 

However, it should be noted that this “logical” confusion between similar objects is 

not entirely consistent. For example, Table ‎4-3 shows that the cylinder and cone are 

frequently confused, possibly because of curved segments. Similarly, Table ‎4-2 

shows the cone classifier frequently outputs the cube. 

These results points out the possible relationship between the features of the 

geometry (such as roundedness, sharpness, symmetry and curvature) and the 

extracted features of EEG signal. For further investigation, we used the classifier 
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trained on all data of 5 primitive shapes to classify all data of other 15 geometries 

(S2-set and complex objects). The classification results are shown in Table ‎4-4.   



www.manaraa.com

43 
 

 

T
a

b
le

 ‎4
-4

 C
la

ss
if

ic
a

ti
o

n
 r

e
su

lt
 o

f 
co

m
p

le
x

 o
b

je
ct

s 
w

it
h

 a
 5

-w
a

y
 c

la
ss

if
ie

r 
fo

r 
su

b
je

ct
  

1
5

  

2
0

 

3
0

 

4
0

 

0
 

1
0

 

1
4

 

 

2
0

 

1
0

 

2
0

 

4
0

 

0
 

1
3

 

 

7
0

 

0
 

1
0

 

1
0

 

1
0

 

1
2

 

 

0
 

4
0

 

4
0

 

2
0

 

0
 

1
1

 

 

0
 

3
0

 

1
0

 

5
0

 

1
0

 

1
0

 

 

4
0

 

2
0

 

2
0

 

0
 

2
0

 

9
 

 

0
 

3
0

 

1
0

 

5
0

 

1
0

 

8
 

 

2
0

 

1
0

 

0
 

1
0

 

6
0

 

7
 

 

2
0

 

1
0

 

3
0

 

1
0

 

3
0

 

6
 

 

2
0

 

1
0

 

1
0

 

4
0

 

1
0

 

5
 

 

1
0

 

3
0

 

1
0

 

4
0

 

1
0

 

4
 

 

1
0

 

3
0

 

3
0

 

1
0

 

2
0

 

3
 

 

0
 

1
0

 

3
0

 

1
0

 

2
0

 

2
 

 

0
 

4
0

 

2
0

 

1
0

 

3
0

 

1
 

 

2
0

 

2
0

 

3
0

 

1
0

 

2
0

 

O
b

je
ct

 I
D

 

T
e

st
in

g
 

se
t 

     

 

 



www.manaraa.com

44 
 

 

The columns represent the true class while the rows correspond to the 

classification results for each of the primitive shape classifiers on the complex 

objects.  The underlined numbers in Table ‎4-4 indicate the most frequent 

classification output for each training data. As an example, the truncated cone 

(object 1) is classified most frequently as cylinder (30%). The truncated cone shares 

more common geometrical features (for example, no sharp edges, round segment) with 

the cone and cylinder than with other primitive shapes. This may explain why the 

truncated cone is classified mostly as a cylinder and not a sphere. Also a hexagonal 

pyramid (object 2) is geometrically more similar to a pyramid (both have angled 

segments, sharp edges and similar axis of symmetry). This geometrical similarity can be 

the reason that the hexagonal pyramid is more classified as the triangular pyramid. 

However, as the geometrical complexity of the object increases (objects 7-15), 

there is no strong relationship between geometrical features and the most common 

classification result. Objects 11 and 13 are two examples of complex objects. Each of 

these objects is combination of three boxes. The classification outcome shows object 

11 is classified as sphere in 50% and never classified as a cube. Object 13, on other 

hand, is classified 70% as cube and 10% as sphere. It should be noted that we have 

defined complex objects as a combination of two or more primitive shapes. 

Therefore, we can divide their geometrical features into two categories. The first 

category consists of the local features which are related to the primitive shapes 

forming the complex objects (e.g. roundness of sphere and sharp edges of cube). The 

second category consists of the global features of the primitive shapes such as 
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symmetry. In the given example, objects 11 and 13 are created from the same 

primitive shapes (same local features) but their global features are different. So the 

output of the classifier may depend on the dominant feature which, in this case, 

seems to be the global features.  

The classification result further indicated that geometrical properties of objects 

such as roundness and parallel extrusion are also salient in classifying imagined 

objects which is consistent with Biederman’s theory of recognition by components. 

Biederman [93], [94] proposed that objects are recognized as a combination of 

primitive objects. These primitives, called geons, can be distinguished from each 

other by attributes such as curvature, collinearity, symmetry, parallelism and 

cotermination. Accidental attributes of objects such as color and texture, though 

cognized, play little part in the recognition.  

Therefore, we further examine this hypothesis for mental imagery through two 

additional binary classifications. Each classifier is designed to distinguish between 

two opposed geometrical feature (or geons): 1-roundness vs. sharpness 2- parallel 

extrusion vs. tapered extrusion. All the imagined objects are classified according to 

these new categories. For example, cube and pyramid are examples of sharpness 

whereas cylinder and cone are instances of roundness. Two binary classifiers are 

designed to examine if these features play a significant role in visual imagery. The 

performance of each classifier is evaluated through a 10 fold validation. In each 

validation, 50% of data is randomly chosen to train the classifier while the other 

50% is used for testing. 
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The average classification results over all subjects are shown in Figure ‎4-5. The 

average classification rate for roundness/sharpness is 69.8% with a standard 

deviation of 8.2%.  Parallel/tapered extrusion classifier has an average accurate rate 

of 78.2% with a standard deviation of 12.1%. Compared to rate of chance (50%) 

both of these results are significant with p-value<0.001. 

 

Figure ‎4-5 Feature Based Classification rate 

 Most importantly, our analysis of best features in feature-based classifier, 

revealed that high frequency component (gamma band) in the left frontal cortex has 

the best predication rate for distinguishing tapered extrusion from parallel.  

4.5 Experimental Study 2: Robustness 

In the first experiment, the robustness of the classification to the stimulus type 

was tested by using both image and text cues in two different sessions where the 

sessions were separated by 20-30 minutes. The classification results show when a 

classifier is trained with EEG data recorded with image as stimulus, it still can 
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classify the EEG data associated with another stimulus with an average accuracy of 

39.9% (range of 26.5-56.7%). The goal of the second experiment is to evaluate the 

robustness of classification on EEG data recorded over a longer periods. 

For this purpose, we repeated the experimental procedure for sessions 1 and 2 

for two subjects over 20 days. We conducted the experiment every other day for 

twenty days, with two sessions per day and 50 trials per session. There was a 20-30 

minute gap between the sessions. This resulted in 100 trials per day per subject. We 

analyzed the data using two approaches: 1) By classifying the data on a daily basis 

2) By training a classifier on the data obtained on the first day and using this 

classifier to classify the data recorded on the other days.  For the first approach, we 

chose 80% of the data recorded in each day to classify the 20% remaining data of 

the same day. The top 12 Hilbert spectral features were chosen by using the MWW 

method. The average classification results of subject 4 over 10 recording days are 

shown in Table ‎4-5. 

Table ‎4-5 Classification results of object imaginary recorded over 10 days 

 Classification Result % 

T
ru

e
 C

la
ss

 

 Cube Pyramid Cylinder Sphere Cone 

Cube 30.4 3.8 18.1 29.4 18.3 

Pyramid 16.8 35.9 14.3 16.1 16.9 

Cylinder 12.3 19.8 39.1 12.9 15.9 

Sphere 32.4 15.1 13.4 28.6 10.5 

Cone 14.8 20.2 16.4 13.2 35.4 

The overall classification rate for subject 1 and 2 are 37.5 and 33.9% 

respectively which is very close to the result of the first experiment shown in Table 
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(34.9% for subject1 and 34.7% for subject 4). This result shows the repeatability of 

the procedure when the testing and training data set are recorded in the same day.  

To check the robustness of the features over time, we used the data recorded on 

the first day to train the classifier and then evaluate its performance on the data 

recorded on the other days.  The classification results are shown in Figure ‎4-6.  

 

Figure ‎4-6 Classification rate of data recorded 10 different days when classifier is 
trained on data of the first day 

Based on the result shown in Figure ‎4-6, when training and testing data are not 

recorded on the same day, the accuracy of the classifier ranges from 20% (chance) 

to 35%.  This accuracy was previously close to 40% as discussed in section 3.5.   

This is mostly due to the non-stationary properties of EEG data which changes 

the dynamics of the signal over different days. In the analysis process, we 

normalized the features of each trial with respect to the features of its baseline. This 

normalization was used to reduce the effect of boredom and fatigue which arise 

with time in each session. However, to reduce the time effect between different 

recording days, it seems that further data normalization is necessary.  
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4.6 Conclusions 

This chapter evaluates the feasibility of using the brain computer interface as an 

interaction device for computer aided design software using visual imagery for 

geometry representation. Among the six characteristics of visual imagery listed by 

Cornoldi et al. [86] (specificity, richness of detail, color, saliency, shape and contour 

& context), all but the shape were fixed. Subjects imagined one of the five primitive 

objects – a cube, sphere, cylinder, pyramid and cone. The brain activity, collected by 

the EEG headset, was analyzed using independent components analysis and the 

Hilbert Huang Transform (HHT). The results show an average classification 

accuracy of 44.6% over ten subjects (ranging from 36 to 56.4%) in a 5-way 

classification. Marginal spectra of different frequency bands calculated from Hilbert 

spectrum of each independent component of EEG data were used as the features of a 

linear discriminant classifier.  

Conducting the same experiment over a longer period (20 days) resulted in an 

average classification rate of 35.7% over two subjects when the classifiers are 

trained and tested on a daily basis. Comparing this results to the results of Table ‎4-2 

with the same conditions (4th row), shows the repeatability of the proposed 

method. However, due to the non-stationary dynamics of the signals, the method 

does not perform effectively when training and testing data are recorded in 

different days. 
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Additionally, the research methodology of using computer images to elicit 

imagined objects is validated by using text cues as another modality. The fact that 

classifier can maintain the classification accuracy over different modalities supports 

the finding of Suppes et al. [95] that show invariance of brain-wave representation 

of visual image and their name.  

This results show that BCIs can be used to distinguish between primitive shapes 

and thus have the potential for use in CAD systems. However, as the complexity of 

shape increases, generation and maintenance of visual objects becomes a more 

difficult task because visual memory cannot hold more than few objects 

simultaneously [87]. This means that classification of visual imagery may be limited 

to simple and primitive shapes and may not provide the CAD system the whole 

capability of object generation. However the classification results of complex objects 

(Table ‎4-4) shows a possible correlation between the features of the geometry (such 

as roundedness, sharpness, symmetry and curvature) and the extracted features of 

EEG signal. Being able to capture some of the main geometrical features of complex 

objects will provide the CAD system with some overall information about the object 

that user intends to create or modify. The correlation between EEG features and 

geometrical features seems to be very promising for application of BCI in CAD 

systems and needs further investigation.  

It is also important to check the classification result in a real-time system. In the 

current study, the time required to process and classify an artifact free EEG signal is 

about 340 ms on a machine with 2.10 GHz AMD Dual-Core CPU. The artifact removal 
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process used in this study is not real-time. Implementing a real-time artifact 

removal process will enable the real-time application as a future work.  

Another improvement to the techniques described here is the use of other 

machine learning techniques. In a comparison between linear and nonlinear 

classifier, Muller et al. [96] showed that kernel-based learning machines such as 

support vector machine increase the performance of EEG classification. 

Furthermore, the classification algorithm can be improved by recording data from 

more locations on the scalp.  

However, none of these improvements will make the system totally reliable. 

Therefore, it might be essential to obtain real-time feedback from the user, possibly 

through the use of emotional responses of the user.  For example, Ko et al. proposed 

an emotion recognition system based on the EEG relative power value and a 

Bayesian network [97]. Frustration, meditation, excitement, boredom are some of 

the emotional states that can be classified [97–99]. In our previous work [100], we 

have demonstrated that we can detect the satisfaction in human-machine 

interaction. Detecting the emotional state and user’s satisfaction can be used in CAD 

systems to correct for errors and to strengthen proper classifications. For example, 

if the BCI system misinterprets a user’s imagined object and consequently, the user 

shows hints of frustration, the BCI can sense this emotion to modify the output till 

the user’s emotional response becomes more neutral. Further experimental studies 

and software development in this direction is presented in next chapter.  
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Chapter 5 

Satisfaction Detection 

This chapter discusses the use of a brain computer interface (BCI) to obtain 

emotional feedback from a human in response to the performance of machine in an 

interactive environment. The purpose of this study is to detect the level of human 

satisfaction and use it as a feedback to correct the machine’s misinterpretation of 

the user’s command. This chapter describes experiments and algorithms that use 

brain activity collected through BCI in order to estimate the level of satisfaction.  

5.1 Background on Satisfaction Detection 

In human-computer interaction, verbal and non-verbal cues have been widely 

used to detect human emotion. Vocal tract formation [101], [102], the change in the 

tone of speech and behavioral speech production process (e.g., duration and pause) 

are some of the features that have been used to detect the human’s emotion from 

auditory signals [103], [104]. 

* The material presented in this chapter is based on our previous work [100] copyright @2011 by World Scientific 
Publishing Co. with permission. 
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Facial expressions can also be used to detect emotional state. Position or 

displacement of specific points and regions of the face are used to find a correlation 

between emotion and facial expression [105], [106]. It should be noted that using 

facial expression is limited to face-to-face interaction and may not always be 

detectable. Most recent works interpret anxiety from physiological signals such as 

heart rate, peripheral temperature, and skin conductivity for emotion detection 

[107], [108]. 

However, the main challenge in emotion detection arises from the fact that 

emotion is an internal state that may not be reflected through behavior. Therefore, 

facial expression and speech do not always coincide with internal mood. This brings 

the idea of using EEG signals for detecting the human’s emotion. Frontal lobe 

activity which is characterized in terms of decreased power in certain frequency 

bands has been consistently found to be associated with emotional states [109]. The 

best known correlates of emotionality found with EEG involve prefrontal 

asymmetry-that is, a positive affect is associated with greater activity in the left 

prefrontal region than in the right side, and negative affect with the reverse [110]. 

Brain activity signals have been also used to detect the level of emotion during 

seeing emotionally-charged scenes [111–113]. Zhang and Lee used a combination of 

functional magnetic resonance imaging (fMRI) and EEG signals to analyze and 

classify the emotional states stimulated by a natural scene [111]. Schaaff and Schults 

[112] used single EEG signals recording to classify the human’s emotion induced by 

emotional pictures of three types - pleasant, natural and unpleasant. They reported 
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an average recognition rate of 47%. Frantzidis et al. [113] used multichannel EEG 

evoked by pleasant and unpleasant stimuli to classify human’s emotion. Using 

Mahalanobis (MHV) distance-based classifier and support vector machines (SVMs), 

they could achieve overall classification rates of 79.5% and 81.3% in the 

discrimination of pleasant and unpleasant emotions.  

In this chapter, we investigate the feasibility of EEG based brain computer 

interfaces for detecting the positive, negative or neutral states of mind of the human 

in response to a robot’s behavior. Section 4.2 discusses the experimental study that 

we conducted to develop the algorithms. Section 4.3 describes the application of 

power spectral density, largest Lyapunov exponent and Mann-Whitney-Wilcoxon 

test to obtain candidate features and to devise classifiers to distinguish between the 

emotions. Finally section 4.4 presents and discusses the results of the classification. 

5.2 Experimental Setup 

The goal of this BCI experience is to detect patterns in brain activities and relate 

them to the mental state (in this case, emotional states). To induce the 

satisfaction/dissatisfaction, we developed an interactive virtual environment where 

user is asked to mentally control the motion of a robot through a maze. This is 

shown in Figure ‎5-1. 

The robots navigation is a combination of three movements: moving forward, 

turning left and turning right. The experiment involves a human participant who 

monitors the robots navigation in the maze and tries to correct robots movements. 
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Figure ‎5-1 Experimental setup for detecting the emotional feedback 

Participants were asked to sit in a self-selected comfortable posture, 40 cm away 

from a computer screen. They were then asked to mentally control the navigation of 

the robot through the maze in the simulation environment. 

The robot navigates in the maze through a sequence of movements. Each 

movement consists of two parts. During the first part (mental command), the 

direction that the robot should go is shown to the participant visually on the 

computer screen. 

The participant is asked to mentally control the robot’s motion on the screen in 

that given direction. For example, an image of a right arrow appears on the screen to 

indicate that the user is to imagine the robot turning to the right. Mental command 

lasts for about 2 seconds and the robot does not move during this time. During 

mental command, the participant will be in a neutral state of emotional arousal. 
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The second part of the movement is the response of the robot to the mental 

command. In reality, the participant does not have control over the robots motion. 

The sequence of turns has been predetermined and occurs regardless of the users 

control input. Thus, sometimes the robot turns in the direction desired by the user 

and sometimes it turns in the opposite direction. Correspondingly, the participant 

will experience satisfaction in the former cases and dissatisfaction in the latter 

cases. 

EEG data is recorded continuously during each part of the movement. EEG data 

during mental command is labeled as “Neutral”. If the direction of mental command 

and robots respond are the same, we label the EEG data recorded during the robot 

response as “Satisfied” otherwise it would be labeled as “Unsatisfied”. 

We conducted this experiment with four male subjects (aged between 21 and 

35) in two different sessions. Each session requires 74 movements (148 data point) 

for the robot to complete the maze. It thus gives a total number of 1184 data points. 

80% of these are used for training the classifiers and the remainder is used for 

testing. Before extracting the features, the first and the last 10% of the recorded trial 

for each movement are chopped to eliminate the transitional effects. 

Figure ‎5-2 shows the signal at channel F3 for two movements. Each movement 

has two data segments. In the first movement, the direction of robot’s movement is 

the same as mental task and therefore the data segment associated with 1st robot 

response is labeled as “Satisfied”. However in this second movement, the two 



www.manaraa.com

57 
 

 

directions are not the same and data segment is labeled as “Unsatisfied”. All data 

segments associated with mental command are labeled as neutral class. 

 

Figure ‎5-2 EEG data recording during two mental tasks and their associated  labels  

5.3 EEG Analysis 

To analyze the EEG signals, five frequency bands are usually considered: delta 

(0-4Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) and gamma (30-100 Hz). It 

has been shown that the power of these sub-bands carry useful information about 

the emotional states [114], [115].  Davidson et al. [114] have shown that disgust 

caused less alpha power in the right frontal region than happiness while happiness 

caused less alpha power in the left frontal region. Moreover, Kostyunina and Kulikov 

[115] found that that the peak in the alpha frequencies increases when the 

participant experiences joy or anger, and decreases when the participant feels fear 

or sorrow. Both spatial and temporal features of EEG sub-bands have been used in 

BCI applications. Some of these features are: amplitude value of EEG signals, [114] 

power spectral density (PSD) values [97], [116] and higher-order crossings [98]. 
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 It has been shown that EEG signals exhibits complex behavior with nonlinear 

dynamic properties [117]. This behavior takes the form of EEG patterns with 

different complexities. Considering this, nonlinear dynamics theory may be a better 

approach than traditional linear methods in characterizing the intrinsic nature of 

EEG. Some researchers have used nonlinear based features of EEG signals such as 

largest Lyapunov exponent and fractal dimension [118], [119]. 

In this chapter, we use a combination of power spectral density (PSD) of 

different EEG sub-bands and the largest Lyapunov exponent (LLE) of EEG signals at 

each electrode location as our set of features. 

5.3.1 Power Spectral Density 

To estimate the power spectrum of EEG signals, we implemented the Welch 

periodogram algorithm-one of the most commonly used techniques to compute the 

power spectrum. EEG signals for each mental task were divided into segments of 

one second, with a Hanning window of the same length applied to each segment, 

and 50% overlapping between the segments. This provides us with a frequency 

resolution of 1 Hz. Five frequency band powers from the delta, theta, alpha, beta and 

gamma bands were extracted. For each data point, normalized power spectral 

density of sub-band ‘b’ at electrode location `l' ( ) is calculated as following: 

         (5-1) 

This produce 5 features at each electrode location which makes a total number 

of 70 features for each data point. 

blPSD

 


5

1b bl

bl

bl

PSD

PSD
PSD



www.manaraa.com

59 
 

 

5.3.2 Lyapunov Largest Exponent 

The Lyapunov Exponent ( ) measures the sensitivity of a dynamical system to 

initial conditions. For a dynamical system in an m-dimensional phase space, there 

exist ` ' Lyapunov exponents (spectrum of Lyapunov exponents). Each Lyapunov 

exponent ( ) defines the exponential average rate of divergence of two 

neighboring trajectories in one direction of the state space. A positive Lyapunov 

exponent corresponds to divergence of trajectories (existence of a chaotic 

attractor). A negative exponent implies the convergence of trajectories to a common 

fixed point. Finally, a zero exponent means the trajectories maintain their relative 

positions (they are on a stable attractor-limit cycle). 

To construct m-dimensional phase space from EEG time series signal, we used 

the reconstruction technique developed by Packard et al. [120]. For a given EEG 

signal, , m-dimensional phase space is formed by using delay coordinate,‘ ’ as 

shown in Equation 5-2. 

mimtxtxtxtX iiii ,...,2,1)])1((...,,)(,)([)(  
   (5-2) 

The algorithm proposed by Wolf et al. [121] is used to compute the Largest 

Lyapunov Exponent (LLE) from each EEG data. We locate nearest neighbor to initial 

point as Equation 5-3. 

     (5-3) 

Then the Lyapunov exponent can be defined by Equation 5-4. 
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Where is the initial distance between these two nearby trajectories and 

is a distance between them at a later time . 

To implement this algorithm, OpenTSTOOL developed by Merkwirth et al. [122] 

is used. In our analysis, we use an embedding dimension of m=8 and delay of 10 

sampling time as they show the best results. Therefore, there are eight Lyapunov 

exponent associated with each EEG data from which we select the four largest one 

as the features of each EEG signal. This will form a total number of 56 LLE features 

per sampling data. 

5.3.3 Feature Selection 

In dealing with EEG classification, an important problem is the huge number of 

features. This arises because (i) EEG signals are nonstationary, thus features must 

be computed in a time-varying manner and (ii) the number of EEG channels is large 

(14 channels which produce total number 126 features). 

To evaluate which of the features provides the most useful information about the 

emotion, we used Mann-Whitney-Wilcoxon (MWW) test. The MWW test is a non- 

parametric test for determining whether two independent samples of observations 

belong to the same distribution. We rank all the features by Mann-Whitney-

Wilcoxon (MWW) test in three binary classifications (each class vs. the other two 

classes). Therefore, we get three rankings for features that each represent the most 

important features of its corresponding class. The features that have the highest 

rank in all three tests are selected as the final feature set for the classification. 

)( 0tL

)( ktL kt
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To get more insight into the information carried by each features, we also 

ranked all the features based on the electrode location. Figure ‎5-3 shows the 

classification rate of each of three classes just by using all features of single 

electrode. This figure suggests that using feature of channels AF3, T7 and P8, almost 

the maximum classification rate for all three emotional states is achievable. 

 

Figure ‎5-3 Classification rate of different channels features  

The extracted features of these channels and their symmetric locations are used 

in a multi-class LDA classifier as the primary classification. The results and final 

classifiers are presented in next section. 

5.4 Results and Discussions 

We used 80 % of the recorded data for training the classifier with three classes 

of “neutral”, “satisfied” and “unsatisfied”. To compare the effect of the types of 

features on the classification rate, we used three sets of features to train the 
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classifier. Table ‎5-1 to Table ‎5-3 show the results of classification for each of the 

classifier (when only LLE, only PSD and finally, both the LLE and the PSD are used). 

Table ‎5-1 Classification result with just using LLE 

Class Neutral (True) Satisfied (True) Unsatisfied(True) 

Neutral (output) 71.6 15.3 13.1 

Satisfied (output) 16.9 78.3 4.8 

Unsatisfied (output) 11.5 6.4 82.1 

Table ‎5-2 Classification result with just using PSD 

Class Neutral (True) Satisfied (True) Unsatisfied(True) 

Neutral (output) 68.1 20.6 11.3 

Satisfied (output) 18.1 77.4 4.5 

Unsatisfied (output) 13.8 2.0 84.2 

Table ‎5-3 Classification result with both using LLE and PSD 

Class Neutral (True) Satisfied (True) Unsatisfied(True) 

Neutral (output) 63.1 22.1 14.8 

Satisfied (output) 14.4 73.1 12.5 

Unsatisfied (output) 22.5 4.8 72.7 

The results show that the rate of detecting “unsatisfied emotion” is significantly 

larger than neutral and satisfied emotions. There is no surprise to see that most of 

misclassification involves “neutral emotion" which is a margin between the other 

two classes. 

We compared the classification rate of the three mentioned conditions with the 

number of features. Furthermore, we used a fourth method where each EEG data is 
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classified three times (each time with one of the feature sets mentioned above). The 

results of these classifiers are diffused using a voting scheme shown in Figure ‎5-4.  

Raw EEG Preprocessing

PSD Features LLE Features

Feature Selection

Best LLE Features
Best Combined 

Features
Best PSD Features

LDA LDA LDA

Vote Counter

Tie Votes? NeutralHighest Vote
Y N

Feature 
Generation/ 

Selection

1st Classifier

2nd Classifier

 

Figure ‎5-4 The algorithm for calculating the final classification result. 

In the voting classifier, if at least two of the classifiers determine that a data 

segment belongs to the same class, the classification result will be this class. 

Otherwise, when none of the classifiers have the same outcome, the data will be 

classified as neutral.  

Figure ‎5-5 illustrates the classification rate versus the number of feature when 

different types or combination of features are used. Figure ‎5-5 shows that 

combining both features does not significantly change the classification result. 
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However, using all the features, according to the voting technique (Figure ‎5-4), 

increases the accuracy of the classifier up to 80%. 

LLE

PSD
LLE and PSD

Voting Classifier

0 5 10 20 25 30
Number of Features

15
 

Figure ‎5-5 Comparison of classification rate of type and number of features. 

Comparing the four different types of features in Figure ‎5-5, it appears that when 

the highest accuracy with the minimum number of features is obtained using the 

LLE. . The LLE can achieve a classification accuracy of 75% using 4 features. Just 

using PSD features, we need a larger size of feature vector to get to the same 

classification rate. However, increasing the size of feature vector in LLE will result in 

a less accurate classifier. This suggests that there are only a few electrodes or sub-

bands carrying suitable information about the emotional state in form of LLE. The 

information is more spread out for the PSD.  

Classification rate based on channel information for both LLE and PSD features 

is shown in Figure ‎5-6 and it appears that PSD features of T8 and P8 channels 

improve the accuracy the most. 
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Figure ‎5-6 Comparison of classification rate of type and location of features. 

Subject based classification results for the four feature types are shown in Figure 

‎5-7. As illustrated in Figure ‎5-7, using the voting method between three LDA 

classifiers gives the highest accuracy level for the subject based classifier. These 

classification rates vary between 80-95% for different subjects. 

  

Figure ‎5-7 Subject based classification for emotion detection 
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The fact that the accuracy of overall classification is less than the subject based 

may be because the emotional response of different participants to the same event 

is not the same. 

5.5 Summary 

In this chapter, we used an EEG-based brain computer interface to detect the 

satisfaction of human in response to performance of a machine in an interactive 

environment. By conducting an experience with a simulated robot that does not 

always follow the human desires, we collected a series of brain activity data using 

the electroencephalogram (EEG). We then used the power spectral density and 

Lyapunov largest exponent to construct 112 features. 

Ranking the feature with Mann-Whitney-Wilcoxon test, the top ranked members 

of each feature set were selected for classification purposes. Comparing different 

type and combination of features, the best classification rate (79.2%) is achievable 

by considering the results of three single classifiers. Furthermore, the accuracy of 

subject based emotional classification can be much higher than the overall accuracy 

with using the same method (80.2%-94.7%). However, using a subject based 

classifier needs new training data for each subject. For future work, an adaptive 

classification method seems to be a wise choice as it can pre-trained based on 

emotional response of a large group of subjects and then adapted as it interacts with 

a new user. 
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Chapter 6 

Object Modification 

 This chapter describes experiments and algorithms that use the BCI for selecting 

and modifying geometrical objects. The first part of the chapter discusses a method 

to select different surfaces of geometrical objects in the CAD systems using the P300 

wave.  The P300 (P3) wave is an event related potential (ERP) elicited by infrequent 

stimuli (target faces flashing). Users wear an electroencephalogram (EEG) headset 

and try to select a target face of an object. Different faces of the object randomly 

flash. Since there are several faces, the target faces flashes relatively infrequently 

compared to the non-target faces. This makes the flashing of target face an 

infrequent event. The EEG data is analyzed with a combination of morphological 

features and discrete wavelet transforms (DWT) to detect the P300 component in 

the signal. The flashing face which causes the P300 component in the EEG signal is 

classified as the target face. Using linear discriminant analysis, the target face is 

classified correctly with an average accuracy of 78.7%. 
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In the second part of this chapter, the selected surface is modified by employing 

the state-of-the-art in motor imagery. In such applications, it is important to detect 

when the user is interested in moving an object and when the user is not active in 

this task. The second part of this chapter evaluates the steady state visual evoked 

potential (SSVEP) as a feedback mechanism to confirm the mental state of the user 

during motor imagery. These potentials are evoked when a subject looks at flashing 

objects of interest. Four different experiments are conducted in this chapter. 

Subjects are asked to imagine the movement of flashing object in a given direction. If 

the subject is involved in this task, the SSVEP signal will be detectable in the visual 

cortex and therefore the motor imagery task is confirmed. During the experiment, 

EEG signal is recorded at four locations near visual cortex. Using a weighting 

scheme, the best combination of the recorded signal is selected to evaluate the 

presence of flashing frequency. The experimental result shows that the SSVEP can be 

detected even in complex motor imagery of flickering objects. The detection rate of 

85% is achieved while the refreshing time for SSVEP feedback is set to 0.5 seconds. 

6.1 Surface Selection: P300 Approach  

The event related potential (ERP) is one of the main methods in using EEG-based 

BCI. ERPs are electrophysiological responses of the brain to an internal or external 

stimulus. The most robust feature of the ERP is a positive peak that occurs around 

300ms after stimulus. This positive peak is known as P300 or P3 [123]. 
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The ERP waveform consists of a sequence of positive and negative peaks in the 

recorded data [51] labeled as P1, N1, P2, N2, and P3 (also known as P300) as shown 

in Figure ‎6-1. The initial peak (P1) is an obligatory sensory response that is elicited 

by visual stimuli without cognitive processes. The P1 wave is strongly influenced by 

stimulus parameters such as luminance. The early sensory responses are called 

exogenous components to indicate their dependence on external rather than 

internal factors. By contrast, the P300 wave depends entirely on the task performed 

by the subject and is not directly influenced by the physical properties of the 

eliciting stimulus. The P300 wave is therefore termed an endogenous component to 

indicate its dependence on internal rather than external factors. 

 

Figure ‎6-1 main ERP components: P1, N1, P2, N2, and P3 

P300 as a main component of the ERP is considered a potential signal for 

detection and implementation in BCI. P300 is a positive EEG deflection that occurs 

during 200–700ms (typically 300 ms) after stimulus onset, and is typically recorded 

over the central-parietal scalp [12]. The response is evoked by attention to rare 

stimuli in a random series of stimulus events (i.e., the oddball paradigm).  

Farwell and Donchin (1988) were the first to develop a P300 based BCI [51]. 

They introduced the P300 speller system, which enabled subjects to spell words by 
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sequentially choosing letters from the alphabet. All alphabets were placed in a 6x6 

matrix whose rows and columns were randomly flashed. P300 component would be 

detected after the flash of the row or the column on which the target letter was. 

Since the work of Farwell and Donchin, most of the research on P300 based BCIs 

were focused either on developing new algorithm for P300 detection or on creating 

new application scenarios to use P300 component [50], [124]. 

Hoffmann et al. presented a six-choice P300 paradigm which was successfully 

tested on five disabled and four non-disabled subjects. They used six different 

images (each representing a specific action) which were flashed in random order 

with a stimulus interval of 400 ms [124]. More recently, Campbell et al., 

demonstrated a brain-controlled address book dialing application for cell phones 

which works on similar principles to P300-speller [125]. 

As it is illustrated in Figure ‎6-2, the similarity of all these applications is to place 

all possible choices in a static grid. Different rows and columns of the grid flash 

randomly while the algorithm detects the P300 components. 
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Figure ‎6-2 Different BCI application based on P300 (a) P300 speller [51] (b) Smart 
home [124] (c) smart phone address book [125] 

6.1.1 Experimental Method 

The experiments for selecting surfaces of a CAD model are conducted as a series 

of trials. In each trial, a target surface of an object is shown to the subject. The 

subject is then is asked to focus on the target face as the experiment starts and count 

silently how often the target face is flashed. The experiment begins with flashing 

two random faces of the object for about 100 ms. Post stimulus EEG signals are 

record for 750 ms. Then two other faces flash (2nd stimulus). The sequence of 

flashes is block-randomized. This means that if the object has n faces, after n/2 

flashes, each face is flashed once, after n flashes each face is flashed twice, and so on. 

The number of blocks is chosen randomly between 8 and 10. Therefore each face 

flashes 16 to 20 times in each run. Figure ‎6-3 shows the time course of an 

experiment. 

(a) (b) (c)
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Figure ‎6-3 Time course of the P300 experiment for face selection 

The experimental study consists of 4 subjects and each subject participated in 

four sessions at two different days (two sessions per day). The 3D object, shown in 

Figure ‎6-3, was used as a target object. Each session consists of 8 runs per subject 

(one run per each face). This gives 32 runs per subject. On the verge, each face 

flashes 18 times in each run. Thus, a total number of 144 trials per face in each run 

is recorded of which 126 (18*7) are non-target (Non-P300) and 18 are target faces 

(P300).  

 After removing the artifacts, a 6th order forward-backward Butterworth band 

pass filter with cut-off frequencies of 1.0 Hz and 30 Hz were used to filter the data.  

6.1.2 Discrete Wavelet Transform 

The Discrete Wavelet Transform (DWT) is a time-scale transformation which 

provides both temporal and spatial information about a signal. The DWT of a time 

series signal X(t) is defined by Equation 6-1. 
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Where in Equation 6-1, )(t is a time function with finite energy and fast decay 

called which is known as mother wavelet. Wavelets, ba, , are the orthogonal 

functions which are obtained from the mother wavelet through dilation and shifting 

process which is shown in Equation 6-2. 
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Where in Equation 6-2, a is the dilation coefficient and b is the time shift. In the 

wavelet space, the time series can be represented as an inner product of 

wavelets and its coefficients as shown in Equation 6-3. 
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Where )(bd j  denotes the wavelet coefficients at scale j. An efficient way to 

calculate the coefficients at different levels is using multi-rate filter bank [126]. Ths 

original signal X(t) will pass through a successive high-pass and low-pass filtering 

The dilation coefficient ( ja 2 ), down sample each sub-band by two so that it 

contains half the samples of the neighboring higher frequency sub-band. This 

process is shown in Equations (6-4) and (6-5): 
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Figure ‎6-4 shows a two-level filter bank which decompose the original signals 
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known as approximation and detail coefficients, respectively. This process can be 

iterated to decompose a signal up to any desired resolution level. 

 

Figure ‎6-4 Two level wavelet filter bank if the sub-band coding algorithm 

Quadratic B-Spline functions are shown to have similarity with evoked response 

and therefore, are used as mother wavelets in this study [127]. 

The EEG signal is recorded at sampling frequency of 128 Hz and therefore by 

decomposing the signal into four octaves, five set of coefficients are obtained which 

are associated with the following frequency bands: 

d1: 32-64 Hz d2: 16-32 Hz d3: 8-16 Hz d4: 4-8 Hz a4: 0-4 Hz 

Prior to DWT, the frequency components of the signal which were above 30Hz 

were filtered. Therefore d1 coefficient does not contain useful information. The rest 

of coefficients represent the signal information in the following frequency bands: 

a4: Delta band: 0.3–4 Hz,    d4: Theta band: 4–8 Hz 

d3: Alpha and lower Beta: 8–16 Hz  d2: Higher Beta band: 16–30 Hz. 

 We use 8 coefficients of the delta and theta band, 8 wavelet coefficients of alpha 

and lower beta band and 16 coefficients of the higher beta band of the post-stimulus 

epoch. This yields a total number of 32 wavelet features per channel. Since the P300 

is more observable at peripheral cortex, we average the signals at symmetric 
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locations (e.g O1 and O2, P7 and P8) and extract the features from 7 average artifact 

free signals.  

In addition to wavelet features, we use a set of morphological features proposed 

by Abootalebi et al [128]. The morphological features are calculated in time domain 

and are listed as following:  

1- Latency (LAT): the time between 200 and 750 post stimulus where the signal 

is maximum 

2- Amplitude of the maximum signal  3- Latency-Amplitude ratio 

4- Positive area under the curve  5- Negative area under the curve 

6- Average absolute signal slope  7- Peak-to-peak value 

8- Peak-to-peak slope    9- Number of zero crossing 

Therefore we extract a total number of 224 wavelet and 63 morphological 

features for each EPOC in each trial. 

6.1.3 Classification 

Since we are dealing with a binary classification for each signal (target vs. non-

target), we rank the key features by a class separability criteria. We use 

Bhattacharyya distance as the measure for separability of binary classification. This 

distance measures the similarity of two discrete or continuous probability 

distributions by measuring the amount of overlap between the two populations. 

Therefore the highest ranked set of features by this criterion projects the sampling 

data of two classes into two spaces that have the minimum overlap (or maximum 

distance) with each other. Using this criterion, we select the top 10 features for the 
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classification purpose. Finally, the selected features are classified by a linear 

discriminant analysis (LDA). 

6.1.4 Results and Discussion 

The main aim of the LDA classifier is to check if the recorded EEG signal contains 

the P300 component. However, the ultimate goal of the experiment is to detect the 

face of the cube that subject was trying to select. The P300 component is seen in 

signal associated with a rare event. Therefore, the more the stimuli are presented 

(more the number of flashing), the higher the probability of detecting the P300. 

Based on this fact, 4 trials of each run in each session (16 trials) are randomly 

selected to calculate the ERP of each face for training. Therefore the remaining 14 

trials in each run can be used to calculate the ERP of the corresponding face for 

testing. Each ERP is classified as P300 or nonP300 component. If the classifier 

detects P300 component in ERP of more than one face, it will be considered as an 

ambiguity and counted as failure in calculating the classification rate. This whole 

evaluation is repeated five times, where the training data is randomly selected in 

each time. 

The classification method is subject based. Each subject performs 8 runs in each 

of the four sessions. This means that the performance of each subject is evaluated 

through 32 target face and 224 non-target faces. The classification results are 

presented in Table ‎6-1. The numbers in the parenthesis show the standard deviation of 

classification rate in 5 evaluations. 
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Table ‎6-1 Classification Result in 5 random evaluations averaged over all subjects 

Subject 
Correct Target 

Detection 
Incorrect Target 

Detection 
Ambiguity in 
classification 

Sub. 1 80.62 ( 3.75)% 10.62 ( 5.0)% 8.75 ( 3.75)% 

Sub. 2 80.00 ( 4.37)% 10.62 ( 8.12)% 9.37 ( 3.12)% 

Sub. 3 76. 25 ( 8.12)% 11.87 ( 6.87)% 11.87 ( 13.12)% 

Sub. 4 78.12 ( 9.37)% 12.5 ( 6.25)% 9.37 ( 12. 5)% 

The presented classification results in Table ‎6-1 show that overall performance 

of the proposed algorithm is 78.7%. It can also be seen that the ambiguity rate in 

considerably larger than misclassification. Ambiguity in the classification means 

that in addition to true target face, P300 component has been detected in another 

face too.  

For each face, we only consider six out of eight runs for P300 detection. So it is 

possible that P300 component may not be detectable in all trials of the true target 

face. This condition can be followed by a misclassification in P300 detection of a 

non-target face. Together these two conditions will cause confusion in detecting the 

true target face. By increasing the number of flashes in each trial this issue can be 

addressed. However increasing the number of flashes will cause a longer wait for 

user to select a target face which is subjected to fatigue in long term application. 

The effect of number of trials in classification performance is studied by 

changing the number of trials in ERP from 8 trials to 14 trials. The results are 

evaluated through 5 classifications.  

Figure ‎6-5 illustrates the results for all four subjects. It can clearly be seen that 

using a lower number of trials for classification will result in lower classification 
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accuracy. As the number of trials decreased, the signal to noise ratio will be decreased 

too, which makes the P300 detection more difficult. 

 

Figure ‎6-5 The effect of number of trials in ERP on classification results 

Another source of ambiguity and misclassification is the method used for 

stimulus presentation. The main idea behind P300 detection is to make the event 

that is desired for the subject a rare event. This is achievable through having some 

non-ideal events repeated more frequently. For this reason, all the faces of an object 

regardless of their size and location are randomly flashed.  

During the stimuli presentation it may often occur that the target face is 

surrounded with relatively larger faces with which it may overlap. Therefore when 

such a face is flashing it may cause a visual error in the subject and make either 
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flashing a non-target face as a rare event or make the flashing of the target event as 

frequent as the other events. 

6.2 SSVEP Feedback for Motor Imagery Engagement 

Motor imagery i.e. the imagery involved in motion has been the primary focus of 

most BCIs. Here signals are obtained during imagined sensorimotor rhythms (SMR). 

Typically, the SMRs are detected based on features of the µ and β rhythms (8–12 and 

18–26Hz) [129]. Changes in the amplitudes of these frequency bands are referred to 

as event-related desynchronization (ERD) (i.e. decrease) and event-related 

synchronization (ERS) (i.e. increase). The rhythms decrease or desynchronize with 

movement or its preparation, and increase or synchronize after movement and with 

relaxation [130]. 

BCIs based on sensorimotor rhythms (SMR) are the basic elements for 

movement control in virtual environments. It has been shown that using SMR based 

BCI, it is possible to control the 2D motion of a cursor [78], [131]. 

The main advantage of motor imagery classification is that it requires no 

external stimuli and the ongoing EEG is used to classify the mental task. However, its 

implementation in continuous human computer interaction is subjected to false 

detection of movement because certain brain activities involved even in an idle state 

can mimic motor imagery. Despite all the research and improvement in BCI system, 

there are still about 20% of subjects who are not able to use BCI with effective 

performance [132]. Therefore in order to use BCI as an alternative in human 
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computer interactions, it is critical to increase its robustness.  To overcome these 

problems, we propose a hybrid BCI approach. This approach uses a stimulus based 

response such as P300 or visual evoked potential in conjunction with sensorimotor 

rhythms to increase the robustness of the BCI [132], [133].  

Similarly, to reduce the false alarm in classification of ongoing EEG signals, 

Pfurtscheller et al [134] have proposed a brain switch by combining visual evoked 

potential and event related synchronization (ERS)-based BCI. Although they could 

achieve high robustness by combining SSVEP and ERS, their hybrid BCI is only 

designed to detect one mental task and may not have the same performance in 

complex situations.  

In this chapter, we have conducted a series of experiments to verify the 

robustness of hybrid BCIs in multi-mental task situations. To this end, steady state 

visual evoked potential (SSVEP) is used in combination with different motor 

imagery. The basic idea is as follows: in human computer interaction, motor imagery 

usually occurs when the subject is gazing on a virtual object to move or rotate. 

Therefore by flashing the object of interest on the screen, it may be possible to get 

passive confirmation about correct detection of user’s intent. This passive 

confirmation (feedback) is achieved through SSVEP detection.  

6.2.1 Steady state visual evoked potential 

Among different brain signals that have been employed for EEG based BCIs, VEP 

(Visual Evoked Potentials) based systems have been studied since 1970s [135]. It is 

commonly accepted as a method that provides high information transfer rate and 
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needs less user training. VEP is the response of human brain to the visual stimulus. 

It is categorized into transient VEP (TVEP) and steady state VEP (SSVEP). These 

correspond to visual stimulus with low and high frequency, respectively. TVEP 

arises when the stimulation frequency is less than 2 Hz, while SSVEP appears when 

the repetition rate of the stimulus is higher than 6 Hz [52].  

It is well agreed that SSVEP has a wider area of application than TVEP because in 

most cases, the human’s brain is considered in steady state of excitability in which 

the responses that elicited by the high frequency visual stimulus will overlap each 

other. Since the characteristics caused by two kinds of stimulus are different, 

researchers usually use temporal methods for TVEP analysis and frequency analysis 

for SSVEP case [136]. 

A Steady-State Visual Evoked Potential (SSVEP) is a resonance phenomenon 

arising mainly in the visual cortex when a person is focusing his/her visual attention 

on a light source flickering with a frequency above 6 Hz [52]. 

The SSVEP can be elicited up to at least 90 Hz [137] and could be classified into 

three ranges: low (up to 12 Hz), medium (12-30) and high frequency (> 30 Hz). In 

general, the SSVEP in low frequency range has larger amplitude responses than in 

the medium range. Thus, the lower frequencies are easier to detect.  

The high-frequency SSVEP ranges have the advantage of a minimum visual 

fatigue caused by flickering, making the SSVEP-based BCI a more comfortable and 

stable system [138]. At a same time, these frequencies experience the weakest 
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SSVEP which make the SSVEP detection a more difficult task and requires 

computationally expensive algorithms.  

6.2.2 SSVEP Experiments 

EEG signals were recorded using the Emotiv neuroheadset at 4 channels on the 

scalp. The names of channels that are used for this study are based on the 

international 10-20 system are: P7, O1, O2, and P8. Signals were recorded at 

sampling rate of 2048 Hz, and sent to the computer wirelessly after being down-

sampled to 128 Hz. 

The selected visual stimulation was a three-dimensional cube that flashed on the 

screen. The background is black while the cube had white surfaces and blue edges. 

All surfaces of the cube were flashing at a frequency of 13 Hz. 

Four different experiments were conducted in this study. Each experiment 

consists of two parts: part one is conducted in only one trial during which the cube 

is not flashing. In this part of the experiment, subject is asked to gaze at the object 

and conduct an imagined movement in a given direction. This experiment only 

contains motor imagery and therefore can be used as the control. Part two contains 

5 trials in which the subject is performing the same task as part one but with 

presence of the flashing stimulus. In each trial for all experiments, the subject is 

asked to sit on a comfortable position and look at the screen. EEG data for each trial 

is recorded once the cube appears on the screen until it disappears.  

The motor imagery task that subject is instructed to perform each experiment 

are shown in the Figure ‎6-6. The arrows indicate the cube’s motion (rotation vs. 
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translation) and its direction. The numbers denote different states during the 

experiment. The arrows and numbers in the figures are only for the convenience of 

description and do not exist in the experiment. 

 

Figure ‎6-6 Combination of Motor Imagery and SSVEP in three different scenarios A) 
Pure Rotation B-D) Rotation and Translation around x , y and z axis. 

In the first experiment, the cube rotates along the horizontal axis which passes 

its geometric center. In the second experiment, as the cube moves from the position 

of initial state 1 to that of final state 2, it also rotates about  the vertical axis that 

passes its geometric center. The third experiment is similar to the second one, but 
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instead of translating from right to left, the cube goes from top to bottom. In the 

fourth experiment, the cube recedes into the screen along the axis that 

perpendicular to the screen and rotates along the horizontal axis that passes its 

geometric center at the same time.  

6.2.3 SSVEP Detection 

An SSVEP BCI reflects the user’s attention to an oscillating visual stimulus. Let 

consider the EEG signal recorded at Ny channels in response to to a visual 

stimulation with a flicker frequency of f Hz. The SSVEP response recorded at each 

channel ( )(tyi  ) can be modeled as Equation 6-6.  

    (6-6) 

Equation 6-6 is a linear model which considers the dominant activity of    

harmonics of the flickering frequency in terms of sine and cosine functions. Any 

other components including other non-SSVEP cognitive process, noise and artifacts 

are considered in the second part ( ). Equation 6-6 can be expressed in vector 

form as Equation 6-7. 

         (6-7) 

where is the EEG of the ith electrode containing Nt data 

points. X is the observation matrix which contains sine and cosine components of 

SSVEP response. The corresponding amplitude of matrix X, (ain and bin) are 

represented with Vector gi. Equation 6-7 can be further generalized for Ny 

electrodes as Equation 6-8. 
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ytyhhtyt NNNNNNNN EGXY   22       (6-8) 

where Y = [y1, . . . , yNy] and  G = [g1, . . . , gNy] include all the EEG data points 

recorded at Ny channels and their associated harmonic amplitudes respectively. 

In order to enhance the SSVEP component in the recorded signal, a virtual 

channel is defined as a linear combination of all the electrode signals, Y 

11  
yyTt NNNN wYs

        (6-9) 

1yNw  is a weighting vector corresponding to the contribution of each recorded 

signal in the enhanced signal. The weighting vector should is selected to minimize 

the non-SSVEP components. Therefore, a linear unbiased estimator is used to 

estimate and thus extract the SSVEP components from the recorded signals. 

       (6-10) 

In Equation 6-10 the term YXXXX TT 1)(  is an estimate of SSVEP component 

and is the remaining signal associated with noise, artifacts and background brain 

activity. The weighting vector W is then estimated such that it minimizes the energy 

of non-SSVEP component of the signal as shown in Equation 6-11:  

         (6-11) 

Herrmann has shown that the minimal eigenvalue of matrix will minimize 

the cost function in Equation 6-11 [137].  The weight matrix is hence chosen based 

on the minimum eigenvalue (λ1) and its corresponding eigenvectors (v1):  

111 / vw
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In SSVEP based BCI applications, the stimulation frequency should be detected 

as a dominant frequency in the power spectral density. Hence, to detect the 

presence of a frequency in the spatially filtered signals, the ratio of power of the 

signal (PSD) at the target frequency with respect to the maximum power of the 

signal is calculated as shown in Equation 6-13. 
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       (6-13) 

The ratio of 1 shows that flashing frequency is dominant in the signal and 

therefore the SSVEP is detectable. 

6.2.4 Results 

A comparison between the power spectral density of the weighted signal 

calculated with Equation 6-16 and the signals recorded at different location near 

visual cortex are shown in Figure ‎6-7. In the actual system implementation, Nh = 2.  

As it can be seen in Figure ‎6-7, the target frequency has a high power in the 

average signals of 40 trials; however it is undetectable in single trial recorded at 

each of the electrodes due to high activity in alpha frequency band (8-11 Hz).  

Finally it shows that the single trial of the weighted signal has its maximum power 

at the target frequency which clearly shows the effectiveness of weighting method. 

Moreover, since our long-term goal is to use SSVEP as feedback to implement the 

motor imagery, we desire a high refresh rate of signal in the time domain. On the 

other hand, since the sampling rate of the signal is only 128 Hz, too short signal 

interval in time domain may cause failure to detect the SSVEP. Because of this trade-
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off, a test on the accuracy of SSVEP detection was done by selecting moving 

windows of different length.   

 

Figure ‎6-7 comparison between the power of target frequency in single trial signal of 
each electrode, the average and the weighted signal 

Figure ‎6-8 shows the details of how moving windows are selected. L is the length 

of entire signal that recorded in the time domain. The first subset has length Lw 

which started from the initial time. Then the subset is modified by shifting forward 

of d seconds.  

 

Figure ‎6-8 The parameters of moving window to be optimized 
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The averaged SSVEP detection rate over all subjects, for different values of Lw 

and d is illustrated in Figure ‎6-9. Each figure compares the classification rate with 

the control. 

As it can be seen in Figure ‎6-9 the minimum classification rate appears at the 

smallest size of the moving window where the number of available data points is 

relatively low.  

 

 

 

Figure ‎6-9 SSVEP detection rate for A) pure rotation-Exp 1A, B) rotation and 
translation x-axis-Exp 1B, C) rotation and translation y-axis -Exp 1C, D) rotation and 

translation z-axis -Exp 1D 

A) B) 

C) D) 
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The classification has to take the moment into account when the user does not 

focus on any stimuli. For this reason, the SSVEP detection rate in the normal 

condition is also calculated. The lower surfaces in Figure ‎6-9 show the SSVEP 

detection rate in normal condition or in other words the rate of false alarm in 

classification. In three out of four experiments, the average false alarm is less than 

5%. Pure rotation with no flashing experiences the maximum misclassification of 

idle case as SSVEP. To further investigate the reason of false alarm and SSVEP 

misclassification, the normalized power of signal at flashing frequency is shown in 

Figure ‎6-10. 

 

Figure ‎6-10 SSVEP detection rate for rotation and translation vs. normal condition 

It is worth nothing that the stimulation frequency is located very close to the 

alpha band, this could produce false classifications in the resting state or slightly 

reduce the normalized power of the target frequency. In this case, the R value will be 

slightly less than one and still classify as non-SSVEP. 

Such problems could easily be avoided by introducing a proper threshold for R 

value and/or using calibration session for every subject. In the calibration session, 

the power of the target frequency is normalized with respect to the normal 
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condition. However, the calibration session is avoided in this study to eliminate the 

training period of the SSVEP detection to consider the worst case scenario when it is 

used as brain switch in a hybrid BCI. 
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Chapter 7 

Conclusion 

This dissertation investigates the brain-computer interface, specifically the 

electroencephalogram (EEG), as an alternative user interface modality for 

computer-aided design (CAD) systems used in mechanical engineering. The goal of 

such a system is to enable designers to create and manipulate objects by imagining 

the geometric operations in their mind. Each chapter of the thesis focuses on a 

different application of BCI in CAD- specifically in object creation, object/surface 

selection and modification and user feedback by detecting the emotional state of the 

user.  

7.1 Visual Imagery for geometry creation 

Chapter 4 discussed experiments to explore object creation using visual imagery. 

The experiment required the subject imagine one of five primitive shapes. Features 

of interest were marginal spectrum of different frequency bands calculated from 

Hilbert spectrum of each independent component of EEG data. The results show an 
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average classification accuracy of 56.7% over seven subjects (ranging from 45 to 

65%) using multi class LDA classifier. 

Furthermore, the results were cross-validated by training and testing the 

classifier on data recorded with various stimuli (image and text) in different 

sessions. In this case, an average accuracy of 50.3% (range of 42-56%) was achieved 

over the entire subject. The fact that the classifier could maintain the classification 

accuracy over different modalities supports the finding of Suppes et al. [95] that 

showed invariance of brain-wave representation of visual image and their name.  

This result indicates the potential of using BCI for distinguishing between 

primitive shapes. However, as the complexity of shape increases, generation and 

maintenance of visual objects becomes more difficult [87]. This means that 

classification of visual imagery using the above methods may be limited to very 

simple and primitive shapes and may not provide the CAD system the whole 

capability of object generation. However, the classification results of complex 

objects show a possible correlation between the features of the geometry (such as 

roundedness, sharpness, symmetry and curvature) and the extracted features of 

EEG signal. Capturing some of the main geometrical features of complex objects can 

provide the CAD system with information about the object that user intends to 

create or modify. 

To investigate this matter, two binary classifiers were designed to distinguish 

between contrasting geometrical features (sharpness vs. roundness and parallel vs. 
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taper extrusion). The result showed an average classification rate of 69.8% for 

roundness vs. sharpness and 78.2% for parallel vs. tapered extrusion. 

 EEG signals rely heavily on careful manipulation of experimental conditions to 

minimize experimental confounds. Thus, many of the studies may be limited in 

generalizability. So for future work, the effect of other visual imagery 

characteristics, which were controlled in our study -such as color, texture or even 

size- should be studied. Furthermore, it would be necessary to conduct experiments 

in a more naturalistic setting.  

Another interesting issue to investigate is the capability of BCI system in 

differentiation between imagery of positive and negative shapes which could enable 

the user to perform task similar to Boolean operations. 

7.2 Satisfaction Detection 

We investigated the feasibility of BCI to detect positive, negative or neutral 

human emotional responses to a machine’s performance. Detection of the level of 

user satisfaction can provide a method to provide feedback to the classification 

algorithms and to modify the system behavior in response to user’s response to the 

machine’s actions.  

Using the power spectral density and largest Lyapunov exponents, a 

classification rate of 79.2% was achieved by considering data recorded from all 

subjects. Furthermore, the accuracy of subject based emotional classification was 
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found to be much higher than the overall accuracy with using the same method 

(80.2%-94.7%).  

Although the subject based classifier provides better accuracy, it needs separate 

training data for each individual user. Though the training period is not a significant 

problem for single user applications, it may not be practical in multi-user 

environments. Therefore, for future work, an adaptive classification method seems 

to be a wise choice as it can pre-trained based on emotional response of a large 

group of humans and then adapted as it interacts with a new user. 

Another important point to consider is the difference in the source and level of 

frustration in human-human interaction with human-machine interaction. Thus in 

order to use the satisfaction level as a cognitive feedback, it is important to further 

investigate these differences and take them into account.  

7.3 Object Selection with P300 

In Chapter 6, we described an experiment and algorithms for using EEG based 

brain computer interfaces for selecting a target face in CAD environment. The 

experiment relied on evoking attention to rare stimuli in a random series of 

stimulus events (i.e., the oddball paradigm). 

Discrete wavelet transform was the main tool for detecting the evoked P300 

component. The coefficients of the DWT contain information in both time and 

frequency domains. Therefore, using them as the candidate features provided the 

classifier with information about changing frequency components in time. 
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The classification results show a promising application of BCI in CAD 

environments. In this experiment, we only considered a relatively simple geometry 

for face selection. However, to make the system more applicable, different 

geometries with different number of faces needs to be considered. Future work also 

needs to investigate whether the number of faces, their size and orientation 

introduce some limitation in face selection.   

To further improve the accuracy of the classification, a proper method should be 

used to visually evoke the P300 component. This method should be able to adapt the 

flashing scheme based on the geometrical features of the object (e.g. number of flat 

faces, number of curved faces, and size of the faces). Finally the trade-off between 

the number of stimuli and the processing time should be carefully evaluated to 

avoid visual fatigue in subjects and to increase the information transfer rate.  

7.4 Outlook for BCI applications in CAD 

Brain–computer interfaces (BCIs) are recent developments in alternative 

technologies of human computer interaction. They promise a novel channel to 

engage human cognitive/emotional states in computer-aided systems. However, BCI 

applications in CAD/E systems are still in their early stages and thus further 

research and development are necessary to ensure that BCIs can meet the needs of 

specific user groups.  

It has been recently suggested that the future generation of knowledge based 

CAD systems will be characterized by four features: “they will be based on cognitive 
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accounts of design, and they will support collaborative design, conceptual design, 

and creative design” [140]. Having this vision in mind, our outlook of BCI 

applications in CAD falls under the following three main categories: 

1. Studying the neurological basis of design cognition : 

Understanding designer’s cognitive process during design activity plays a 

significant role in developing design theory and methodology. The first study to use 

brain’s activity during design process was conducted by Göker in 1997 [141]. He 

studied the effect of experience in design process by analyzing the designer’s EEG 

activity. His findings show that novice designers use deductive reasoning in design 

process while experts prefer to apply their experience directly. 

Despite the importance of studying the design cognition, most of the research 

has been focused on other relative concepts such as creative thinking. Although 

design process is a creative task with its own flexibility, it also depends on a set of 

well-structured steps for analyzing the problem, finding and expressing the solution 

and finally evaluating the final design.  

One future direction of research in this category of BCI application would be to 

develop metrics and methods to evaluate user’s cognition during the early stage of 

design. The effects of parameters such as experience, creativity, familiarity with 

design team and even social skills on selection and evaluation process in design 

activity are particularly important.  
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2. Novel CAD/E applications for shape, structure, and product modeling or 

evaluation through brain-computer interfaces. 

To the best of our knowledge, this dissertation is the first attempt to use BCI for 

product modeling and generation. However, from the human-computer interaction 

point of view, object creation or modeling is simply a transfer of information from 

user to the machine, which in case of BCI is in the form of a mental command. To 

completely replace the traditional mouse-keyboard interface, BCI or, any other 

alternative interface, should provide a competitive information transfer rate. 

Despite the technological developments, there remain numerous obstacles to 

building efficient BCIs. The biggest challenges are related to accuracy and 

information transfer rate (ITR). The maximum ITR of current BCI systems is in the 

order of 35 bits/min for visual imagery [28], 55 bits/min for P300 based 

applications [142] and 124 bits/min for SSVEP [143].  

This suggests that BCI may be better used as an additional modality during the process 

rather than a stand-alone mode of human-computer interaction. BCI can provide 

information that traditional mouse-keyboard, or even more recent modalities such as 

gesture and sketch-based systems cannot provide. The emotional and cognitive state of the 

user and the level of concentration are examples of information that BCIs can contribute in 

a multi-modal system. As an example for product modeling, the user can start creating the 

product using the traditional modalities, while his brain signal is being analyzed 

simultaneously. Using the visual imagery classification, BCI can detect the category of the 

object and/or some general geometrical features (e.g. symmetry) which will benefit the 

product design. Therefore, we envision that effective integration of BCI communication 
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with other modalities in design tools and systems would probably have a major 

impact in near future. 

3. BCI system in collaborative conceptual design: 

This category in fact is a combination of the two prior categories. The main 

direction of this research should be the implementation of concepts discovered in 

studying the design cognition in to a collaborative design environment where 

multiple users and machine interact.  

Such applications can benefit from algorithms and methods in passive BCI 

systems such as the detection of workload or the emotional state of a user or the 

cognitive states involved in design collaboration. 
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